

In-memory computing with emerging memory devices

Daniele Ielmini

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano <u>daniele.ielmini@polimi.it</u>

Daniele lelmini

Emerging memory devices

Daniele lelmini

SiO_x-based RRAM devices @ Polimi

- Ti/SiO_x/C RRAM with 1T1R structure, 10⁴ on-off ratio, 10⁸ cycles, 1h @ 260°C retention
- Currently used for in-memory and neuro-computing projects:
 - RESCUE erc

DEEPEN

Why in-memory computing?

- Advantages:
 - In-memory computing: no distinction between memory and logic to overcome von Neumann bottleneck
 - Nonvolatile state → zero off-state power
 - Crossbar array \rightarrow high gate/synapse density + physical computing
 - Back-end, $3D \rightarrow$ easy integration with CMOS and high density
- Drawbacks:
 - High current, high voltage \rightarrow high dynamic power
 - Long switching time \rightarrow limited speed
 - Limited endurance

In-memory computing with emerging memory devices

IUNET days 2017

Daniele lelmini

Unimore: neuromorphic computing device

- Investigation of material/device properties for analog switching
- Development of a multiscale modeling and simulation platform supporting design on novel devices and measurement interpretation
- Technologies targeted: RRAM, FeRAM
- Abrupt switching in HfO_x RRAM in pulse regime

Daniele lelmini

Deep neural networks (DNN) with emerging memory

Learning and recognition of 60,000 handwritten digits by PCM array G. W. Burr, et al., IEDM Tech. Dig. (2014)

Daniele lelmini

Brain-inspired neurocomputing

Brain-inspired neurocomputing

In-memory computing

A different approach: brain-inspired computing

P.A. Merolla, et al., Science 345 (2014)

	IBM TrueNorth	Human brain	Gap
Number of cores	4096		
Number of neurons	10 ⁶	0.86x10 ¹¹	~10 ⁵
Number of synapses	2.5x10 ⁸	1.5x10 ¹⁴	~10 ⁶
Power	63 mW	20 W	~10 ³

 A major breakthrough is needed to overcome the current limitation of brain-inspired computing technology

IUNET days 2017

Neuromorphic computing @ Polimi

- Within Polimi:
 - ERC RESCUE (REsistive Switch CompUting beyond CMOS): develop resistive-switch computing devices, circuits and architectures for in-memory logic and brain-inspired neurocomputing (2015-2020)
 - DEEPEN (DEvicE-Physics Enabled Neuro-computing): develop neuromorphic circuits based on physical computing (2017-2020)
- Within EU:
 - NEURAM3 (Neural computing architectures in advanced monolithic 3D-VLSI nano-technologies): neuromorphic architecture with spiking neurons, FDSOI 28 nm, RRAM synapses (CEA Leti, CEA List, STMicro, imec, IBM, CNR, ETH, IMSE, JACU)
 - MNEMOSENE (Computation-in-memory architecture based on resistive devices)

Devices	 Synaptic devices for spike timing dependent plasticity (STDP) In-memory logic gates Physical models Compact models for circuit design and simulation Algorithms for multilevel programming and physical computing 		
Circuits	 Design, simulation and fabrication of integrated neuro-circuits Crossbar arrays for matrix-vector product and deep/convolutional neural networks Integration of hybrid CMOS/memristive circuits 		
Systems	 Artificial vision Robot/drone navigation E-health Traffic management 		
Neuroscience	Interdisciplinary breathBrain-inspired concepts		
Neuroinformati cs	 Simulation of spike processing and plasticity in neural networks 		
IUNET days 201	7 Daniele lelmini POLITECNICO DI MILANO		