

IV Giornata IU.NET

Perugia - 21-22 settembre 2017

Francesco Pieri - UniPl

Sensors and MEMS @ IU.NET: status and perspectives

Where are we?

- More-than-Moore
- Already pervasive (and growing):
 - cellphones (already here): inertial, magnetic, resonators, ...
 - automotive (enabling for driverless cars): inertial sensors, LIDARs, ...
 - energy: thermoelectric/vibration energy harvesting
 - IoT (wearables, smart home, ...)
 - Biomedical for diagnostics and therapy (huge potential market, heavily regulated): biosensors, continuous drug delivery, ...
- Sensors vs. MEMS?
- Access to technology is key:
 - tweak CMOS (inflexible)
 - In-house (limited in scope)
 - Partners with MEMS capabilities
 - Off-the-shelf (not-so-flexible; e.g. Europractice)
- MEMS Industry players: STMicroelectronics in Italy (and therefore Lab4MEMS I and II)
- MEMS/Sensors @ IU.NET

Sensors@UniUD: nano-electronic sensors

Nanoelectronics enables massively parallel sensors for pervasive monitoring and diagnostics.

- Based on Ion Sensitive FET arrays (mostly operated in DC), Micro- and Nanoelectrode arrays (Impedance spectroscopy in AC)
- Objective: optimization of the transduction chain, sensor design, interpretation of data
- Contents: multiscale, multiphysics numerical simulation tools, bridge to circuit design

Example: simulation of pH response of nanoribbon ISFETs

Example: high frequency impedance spectroscopy in nanocapacitor arrays

Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

C. Laborde^{1†}, F. Pittino^{2†}, H. A. Verhoeven^{3†}, S. G. Lemay¹, L. Selmi², M. A. Jongsma³ and F. P. Widdershoven^{4*}

onitoring and diagnostics. and Nanoelectrode arrays

nterpretation of data Ige to circuit design

Sensing of "invisible" objects

Quantitative prediction of experimental data

Discriminate dielectric and conductive particles

Sensors@UniUD: III-V x-ray detectors

Laser or medical.

PRIN 2015

UniUD: modeling (MC+TCAD) of avalanche gain, noise and speed UniTS + UniUD: experimental characterization **CNR-IOM:** fabrication **ELETTRA Synchrotron: read-out electronics**

- Partial exploitation of existing competences in MC simulation and III-V modeling
- Know-how then applicable to other optical detectors

Extension of existing concepts to innovative applications: X-ray detector for Synchrotron radiation, Free-Electron

Require very low-noise/low-jitter

Sensors@UniRM1: CMOS-based THz Rectifier

Proposed Architecture: principle of work

Sensors@UniRM1: Silicon nanostructures

Celle solari

Sensori FET

LED

Batterie

6

Sensors@UniRM1: Silicon nanostructures

Grown by MWCVD/PECVD

200 nm	-	EHT = 8.0
		WD = 6.8

T_{sub}

Lab4MEMS(I)

- ENIAC project, 2013-2016
- ST led
- Main goal:

"aims to establish a European Pilot Line for innovative technologies on advanced *piezoelectric* and *magnetic materials*, including advanced Packaging technologies to meet the ever evolving market needs."

IUNET involvement:

PoliMI: 3-axis magnetometers, Lorentz magnetometers UniBO: piezoelectric energy scavengers **UniPI: piezoelectric resonant sensors**

MEMS@PoliMI: vision and tools

- Derive specifications at the sensor, electronics and package starting from application specifications.
- Predict trade-offs between these sub-specs, and take key decisions in the design phase with a systemlevel point of view.
- Predict effects of environmental changes and take them into account in the design for reliability & repeatability.

MEMS Design

- Theory (Multiphysics coupled equations)
- Behavioral models (e.g. for nonlinearities, ...)
- FEM (2D-3D Modeling),
- CAD design (layout and final refinements)

IC Design

(interfaces, oscillators)

application specifications

electronics

sensor

packaging

Vibrations, ...

Characterization Design validation (Q, resonance, C-V, ...)

 Performance validation (sensitivity, noise, TCS, ...)

MEMS@PoliMI: Current activities

First 3-axis Frequency modulated Lissajous-mode gyroscopes

Novel modulated MEMS accelerometers for low offset drift

Piezoresistive-NEMS based compact, high-performance gyroscopes

Compact Lorentz-force MEMS magnetometers

Real-time clocks based on MEMS resonators

40 Temperature [°C]

RRW = 0.7 dph·VH

MEMS@UniPI: resonant MEMS sensors

Expertise:

- MEMS Design and modeling (analytical and reduced models, FEM)
- CMOS-MEMS fabrication and characterization
- Resonant (bio)sensors

CMOS-compatible biofunctionalization

Example: CMOS-based resonant mass sensor

92.5 93 93.5 94 94.5 95 95.5 96 96.5

frequency [kHz]

Example: c-Si Lamé resonators with enhanced sensitivity -TCF compensation by doping/perforations

MEMS@UniPI: resonant MEMS sensors

Phononic crystal resonators Periodic modulation of mechanical properties (elasticity, density, cross-section, ...)

 $E_1 \hspace{0.1in} E_2 \hspace{0.1in} E_1 \hspace{0.1in} E_2 \hspace{0.1in} E_2 \hspace{0.1in} E_2 \hspace{0.1in} E_2$

- Fast modeling with acoustic transfer matrices
 - FEM validation
 - experimental validation

-40

-50

-60

-70

-80

0.0

 $'_{out}N_{in}$ (dB)

 $E_2 E_1$

Lab4MEMS II

- ENIAC project, 2015-2018
- ST led (again)
- Main goal:

"L4M2 will feature the Pilot Line for innovative technologies on advanced Micro-Opto-Electro-Mechanical Systems (MOEMS)."

IUNET involvement:

- UniPI: mirror design
- UniMoRe: IC design (mirror drivers, laser drivers) UniBO: optical simulation of mirror reflectivity UniPD: mirror characterization, mirror reliability

MOEMS pico-projector

MEMS@UniMoRe: Circuit design for MOEMS

Technology: 65 and 55nm by STMicroelectronics

Current driver for micromirrors

- Transconductor stage: able to provide current > 75 mA
- Differential Sallen-Key 2nd order low pass filter: reduce gain at MEMS resonance (>300 Hz)

MODENA E REGGIO EMILIA

Laser driver for Speckle noise reduction

ANSYS R16.2 Academic Differential out Transconductor Sallen-Key LPF

14

"Class-D" amplifier where width of output pulse is modulated by the amplitude of the input signal

Sensors@UniMoRe: NW technology solutions

Printed NanoWires on transparent and/or flexible layers featuring tuned electrical and optical properties

Applications:

- Thermocouples
- **Heaters**
- Antennas
- Thermo-acoustic loudspeaker
- Piezo-electric mics & strain

MODENA E REGGIO EMILIA

15

MOEMS@UniBO: optical simulations

- Expertise in the field of 2-D/3-D optical simulation (Finite Difference Time Domain – FDTD, Rigorous Coupled-Wave Analysis – RCWA) applied to optical reflectivity of micro-mirrors.
- Objective: optimize the geometry by taking into account for process-dependent interface morphologies.
- Tool requirement: adequate simulation of light scattering with features smaller than the wavelength (rules out ray tracing. scalar scattering models)

Enhanced RCWA (eRCWA)

- 2D multi-layer stack.
- Inter-layer corrucated profiles
- structure is divided into uniform regions and corrugated interfaces (with non uniform permittivity).

MOEMS@UniBO: optical simulations

- assumption

- Uncoated 100nm AlCu mirror (100nm) thick) on Silicon.
- Inset: AFM surface morphology images of the bare 100-nm-thick-AlCu layer on Si.

Parametric sensitivity

 Simulated reflectivity of a dual layer TiO₂/SiO₂ coated mirrors w/r to interface roughness σ and correlation length L. Comparison with ideal flat-interface

MEMS@UniPD: characterization

Characterization of static and dynamic performance of MEMS micromirrors

Frequency laser tracking of angular deflection in electrostatic torsional mirrors

MULTI-POINT SCAN

FEM simulation

Dynamic mirror deformation by laser Doppler vibrometry

MEMS@UniPD: reliability

Evaluation of long-term stresses in linear electrostatic mirrors

- The mirror is alternatively biased in DC (15 hours) and turned off (8 hours).
- The tilting angle is acquired at logarithmic times during both phases.

MEMS@PoliTO: MOEMS design

Design and FEM simulation of piezoelectric MEMS micromirrors

Tilting mirror with mechanical angle amplification

circular mirror with multiphase actuation

Where from here?

- Few traditional big players (Bosch, STM, HP, TI) but mature applications (inertial, pressure, etc.) are quickly commoditized
- new players can enter the market with the right application (e.g. Knowles with microphones, Avago with **MEMS** filters)
- Next trends:
 - Sensor is still the core, but
 - around the sensor, applications will be smart, pervasive, connected
- Role of IU.NET?

Thanks to...

Luca Selmi, Pierpaolo Palestri (UniUD), Alessandro Spinelli, Giacomo Langfelder (PoliMI), Claudio Fiegna, Mauro Zanuccoli (UniBO), Gaudenzio Meneghesso, Marco Barbato (UniPD), Luca Larcher (UniMORE), Danilo Demarchi (PoliTO)

