

Micro-Power Management and System Integration Considerations for IoT Edge Devices

IUNET Days 2020 10th Sept 2020

Mike Hayes

ICT for Energy Efficiency

michael.hayes@tyndall.ie +353 87 2887294

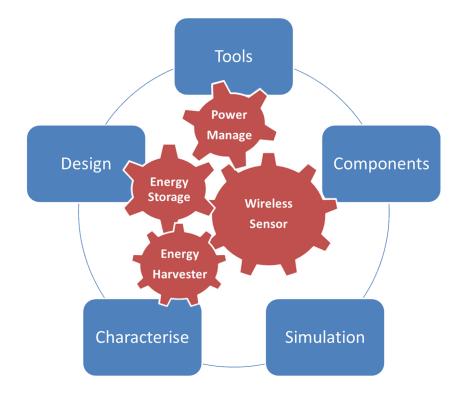
www.tyndall.ie

Opportunity

- 100 Billion connected devices, 1 trillion sensors by 2025¹
- CAGR 12.6%, with spending forecast to reach \$1.1 trillion in 2023²
- One Third of spend will be Commercial industries
 - Discrete Manufacturing
 - Process Manufacturing
 - Transportation
- Key Applications
 - Condition Monitoring
 - Energy and process efficiencies
 - Asset Tracking
- What's needed
 - Sensors and Actuators
 - Cost effective
 - Battery powered in many cases especially the retrofit case
 - Deploy and forget
 - Low maintenance

 P. Diamandis, M.D. Singularity University, https://singularityhub.com/2015/05/11/the-world-in-2025-8-predictions-for-the-next-10-years/
IDC marketing report June 2019 https://www.idc.com/getdoc.jsp?containerId=prUS45197719

Challenges - Power


- Wireless, battery driven, deploy and forget sensors most suited to retrofit.
- Replacing batteries is expensive.
 - Cost of labour to replace
 - Cost and Impact of maintenance schedules
 - Production down time
 - Hard to access
 - Often replace batteries not yet depleted
 - Cost of battery
 - Environmental costs
- The power challenge
 - Autonomously power the wireless sensor from ambient energy.
 - OR to make the battery outlive the sensor.
 - WHILST at the same time ensuring a continuous reliable supply of power!

Challenges - Interoperability

- An energy harvested power system is a complex system
- To enable development of these complex systems a number of functions are required.
- Effective design requires all parts to be easily integrated, this requires standardised interfaces and models
- Enablers for interoperability
 - Standardised characterisation methods
 - Common simulation tools and interfaces
 - Common design methodologies
 - Standardised component libraries
 - Early collaboration

Focus of ICT4EE group at Tyndall

We supply solutions to help power the Internet of Things with particular focus on wireless edge devices

Technologies

- We are supplying some combination of
 - Micro-power management/Energy Harvesting (EH) platforms,
 - hardware system integration and
 - testbeds

in several projects

Applications

- Energy Efficiency in Buildings and Micro-grids
- Conditional Monitoring (CM) of Machines, Equipment & Infrastructure
- Asset tracking

The following slides comprise

- Some tech insight into power management activities
- High level overview of system integration outputs
- Links and synergies with EU EnABLES project

Focus of Tyndall & EnABLES – The 'Power IoT' Challenge

Industry challenge:

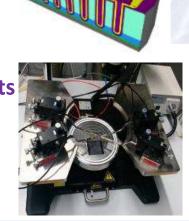
How do we make the batteries outlive these 1 trillion IoT sensors?

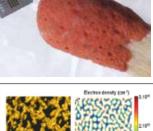
Solution:

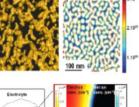
Collaboratively and concurrently develop application orientated & optimised solutions

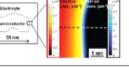
- Get academic and industry developers of energy harvesting components and systems as well as IoT devices to work together
- Accelerate & optimise development of parts and systems
- Parts should be standardised and interoperable

Tyndall doing this via internal and external collaborations External collaborations spearheaded by

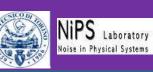

EU infrastructure project


- Builds an ecosystem to power the internet of things
- Driving system level thinking & optimization
 - Via collaboration, inter-operability, standardization
- Its Transnational Access program* gives
 - Free of charge access to expertise & laboratories
 - Feasibility studies
 - (paper, simulation, characterisation, proto)
- Sign Up and enquire at <u>www.enables-project.eu</u>
- Joint Research Activities* are creating
 - System optimised, application orientated solutions
 - De-risked & standardised methodologies & library parts
- * Open to industry and academic applicants worldwide
- ****** Done by project partners listed below

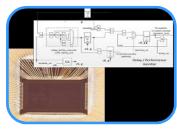




EU Project 730957



Sample Access projects


EnABLES-003 Thin film batteries at CEA-Leti

EnABLES-004 RF energy harvesting at Fraunhofer IMS

EnABLES-005 Stacked micro batteries at CEA-Leti

EnABLES-017 ASIC for Vibrational EH at imec-NL

EnABLES-006 Low power animal tracking at Fraunhofer IIS

EnABLES-025 Improve thermoelectric performance at CEA-Liten

EnABLES-009 PV energy harvesting at Fraunhofer IIS

EnABLES-015 Electrochemical micro batteries at Tyndall

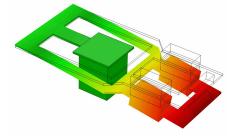
More can be found here

https://www.enables-project.eu/stories/

Note:- We also provide VIRTUAL ACCESS to a repository for ambient energy sources from Universities of Perugia (UNIPG) & Southampton <u>https://www.enables-project.eu/offer/virtual-access/</u>

Where does Nanotech fit?

- Lots of More than Moore and system level cross cutting technologies....
- Improve performance of transducer and storage devices
- Several examples of work underway in EnABLES JRAs ref . next slide
 IUNET members UNIBO, UNIPG & POLITO involved (different departments)
- No direct benefit in moving away from standard CMOS for PMICs except for niche applications external components much bigger than PMIC
- Any work that could help reduce size of external parts and MEMS devices/systems would help – e.g. capacitors, magnetics, sensors, antennae
- Any work that reduces power consumption of devices, esp. sensors
- Anyone doing low power air quality, internal motion or occupancy detection?
- Any suggestions that help us increase generated power and reduce consumed power are welcome!

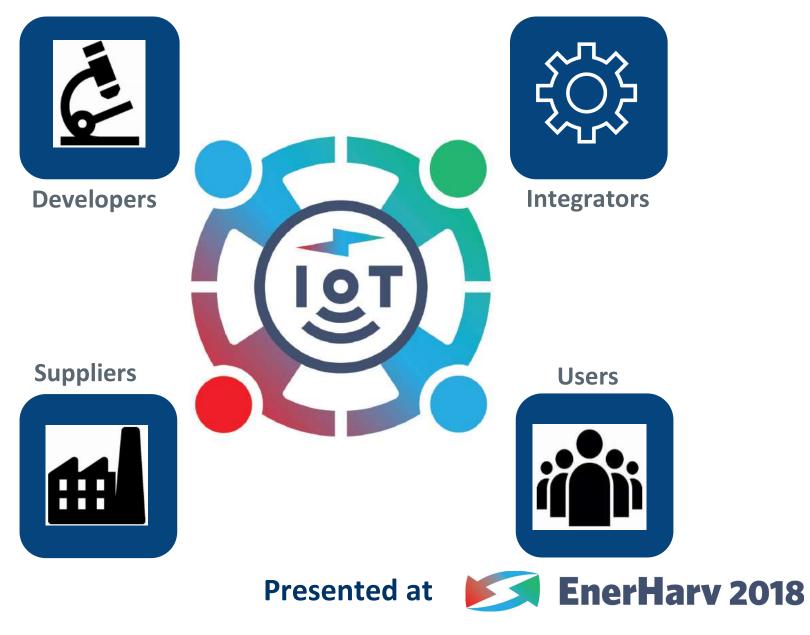

Some EnABLES JRA Activities

Energy Harvesting (EH)

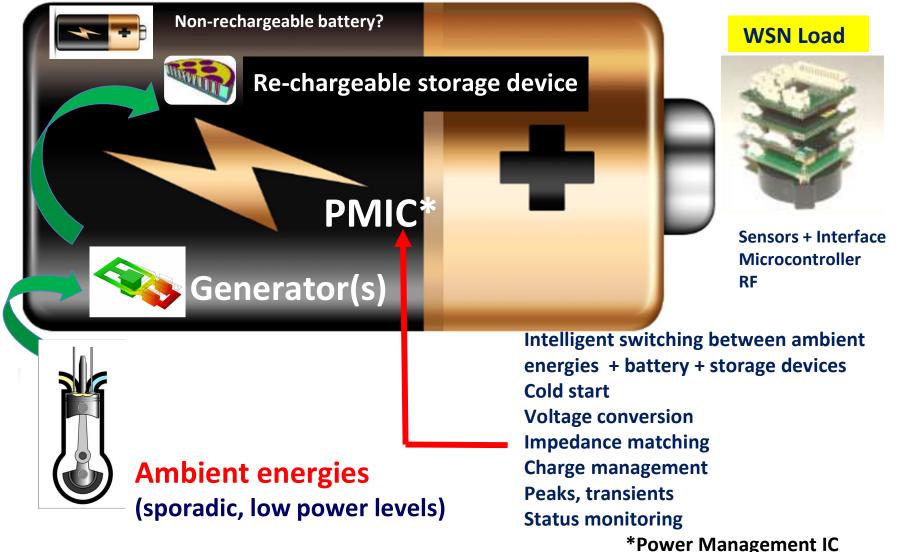
- Wide-band non-linear vibrational harvesters
- Fabrication of a fully integrated MEMS Electromagnetic Vibration Energy Harvester
- Modeling and characterizing nonlinear wideband MEMS electrostatic Vibration Energy Harvester & investigate its integration with electrets.
- Novel high-performance thermoelectric materials & simulation models
- New integrated technique to measure anisotropic components of Seebeck coefficient, electrical and thermal conductivities
- Increase efficiency of amorphous silicon solar cells on 8" wafers

Energy Storage (ES)

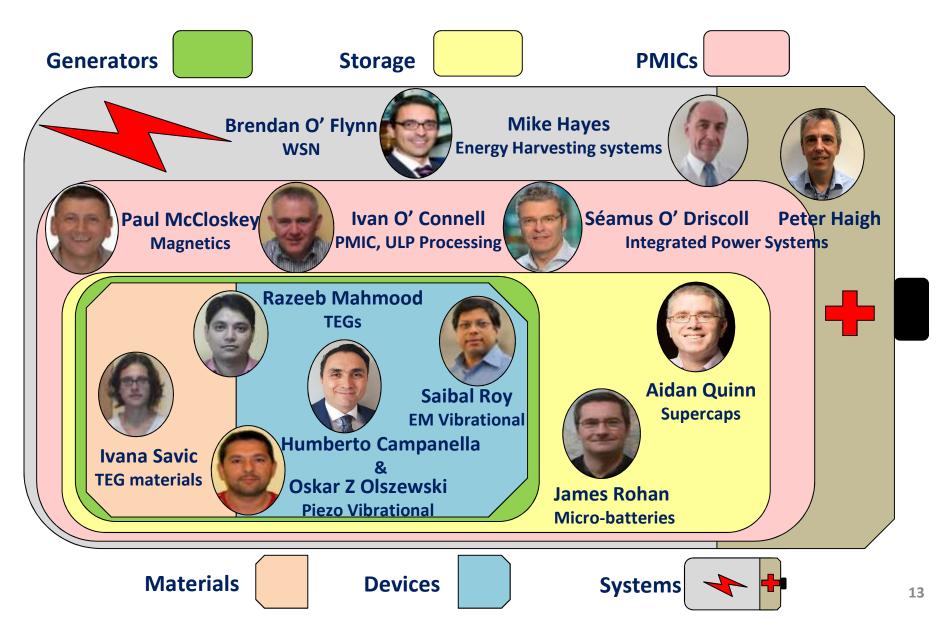
- Nanoscale materials that yield high-rate fast charging and discharge
- Enhancing cathode stability to increase the energy density
- Nanoscale protective films via ALD/CVD for higher energy density electrodes & improved lifetime
- Sulphur-based cathodes with x10 higher theoretical energy capacity
- Room temperature ionic liquids & new solid-like, solid-state and hybrid composite solutions
 - improve thermal, ion transport & safety features of electrolytes
- ALD/CVD deposition of protective materials -higher energy/power density, lower cost, long life
- High entropy oxides (HEO) promising new material class for electrode materials.



Our Ecosystem of Stakeholders



Technology - Energy harvesting


Replacing the function of a battery is not easy

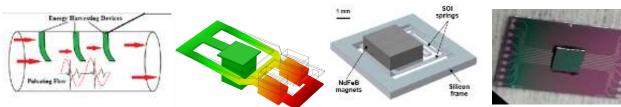
Complex array of stuff to be integrated

Tyndall has an Ecosystem of PIs to address this



A One Stop Shop -Tyndall Energy Harvesting & Storage

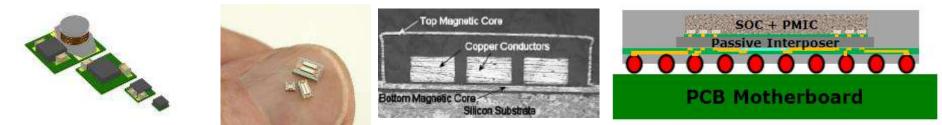
Control
Power Management ICs & Circuits
Multi-source
Self-start
High efficiencyImage: Control of the second second


Generation

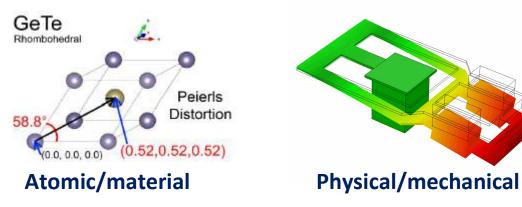
Flexible batteries

Nanotube high density

Micro-batteries


Generators on silicon Wide bandwidth vibration (Electromagnetic & piezo) High density MEMS IC integrated highest efficiency TEG materials

Material, Device & System Integration



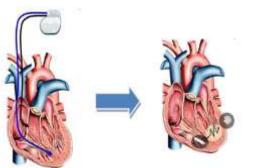
Embedded Magnetics

Making magnetics disappear in packages (PSiP) & onto ICs (PwrSoC)

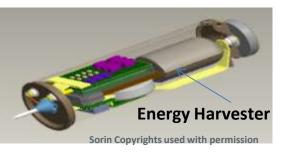
Simulation

The Power of Collaboration

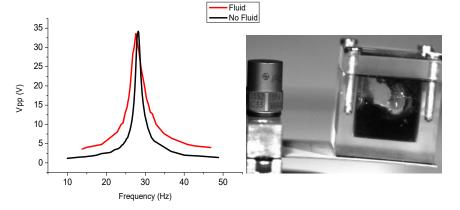
System application optimised parts & devices e.g. Harmonise methodologies & specifications Compatibility:- Process, Electrical, Packaging

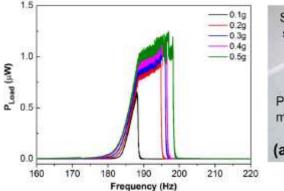


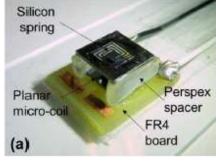
Design/Deployment tool Circuits (discrete & CMOS)



Some Application System Integration Examples







Miniaturisation:- Implantable Energy Harvester

Performance enhancement:- Wide bandwidth Vibrational Energy Harvesters

Circuit and system innovation:- Indoor solar energy harvester

Power Management Circuits 16 With MPPT Implementation

"MISCHIEF"

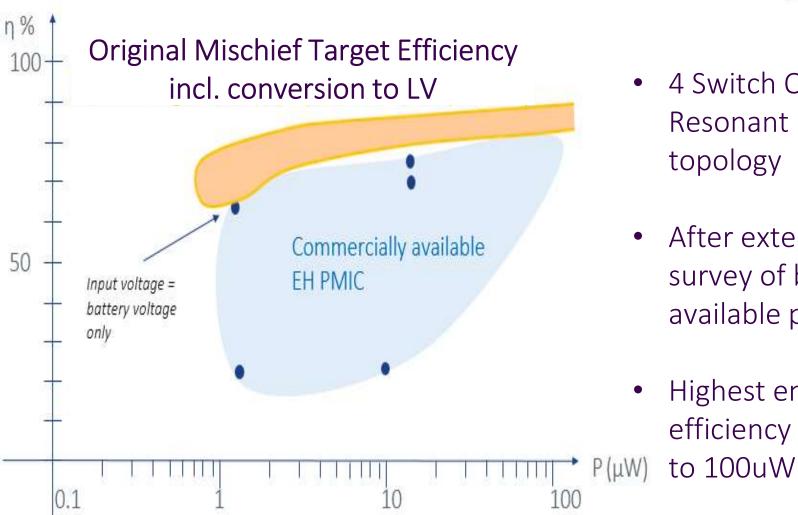
Multi-source energy harvesting PMIC

Highest efficiency switch-mode, energy harvesting PMIC, measured @ 10 μ W point

Cold-start and operation over ~1uW to 200mW

Lowest quiescent current (I_Q) in low power regulation mode, <200nA

Highest end-to-end system efficiency

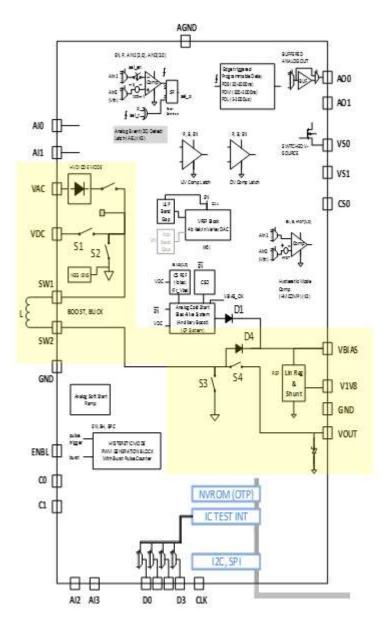

Uniquely beginning with both *Boost and Buck* modes to both battery voltage (~3V) and LV (~1V8)

Technology Platform proofed for **FAST TRACK LOW RISK** development of:

- Next Gen control & features
- (Very much with *mixed signal* control approaches)
- Substantially increased power transfer Vibrational Energy

Not just for energy harvesting, also for any low power application, particularly good at interfacing with 'smart switching loads' to extend battery life

Highest Efficiency & Next Gen Capability



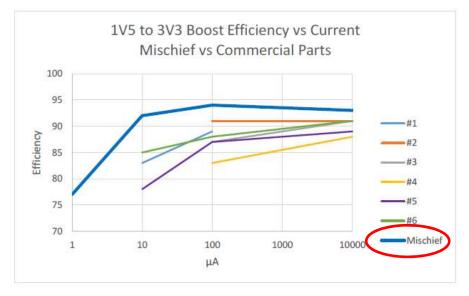
- 4 Switch Quasi **Resonant Buck-Boost** topology
- After extensive survey of best available parts
- Highest end-end efficiency over 1uW

Mischief Gen. 1 Platform Block Diagram

- Asynchronous and Analog
- Dynamic Power/Speed Control
- Fast Start and Stop Blocks Efficient Duty Cycling

A platform strategy – interface with Microprocessor or FPGA and will be used for digital state machine development

"MISCHIEF"


Gen 1. Results presented at EnerHarv 2018

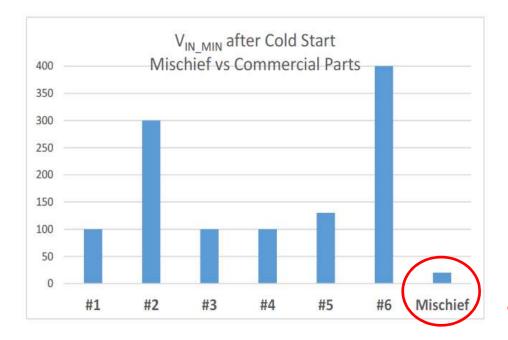
Comparison with commercial parts.... 2018

World leading in efficiency, power range, voltage range and quiescent current

Only one part surveyed has buck-boost capability None have advanced digital configurability (SPI)

Mischief based on Top Level Schematic Sims (not LVS)

Part nos ADP5090, MB39C831, AEM10940, SPV1050, BQ25504, MAX17220



"MISCHIEF" Results presented at EnerHarv 2018

Low Vin operation after cold start

Marketplace EH PMIC	SPI/ I2C Interface with Host WSN Controller	Тороlоду	Low Output Voltages
#1	No	Boost	No
#2	No	Boost	No (3V+)
#3	No	Cascade Boost, Buck+LDO	Yes
#4	No	Boost, Buck- Boost, LDO	Yes
#5	No	Boost	No (2V+)
#6	No	Boost	No
Mischief	Yes	Buck-Boost	Yes (1V+)

"MISCHIEF"

Capability presented at EnerHarv 2018

Examples of technology block available

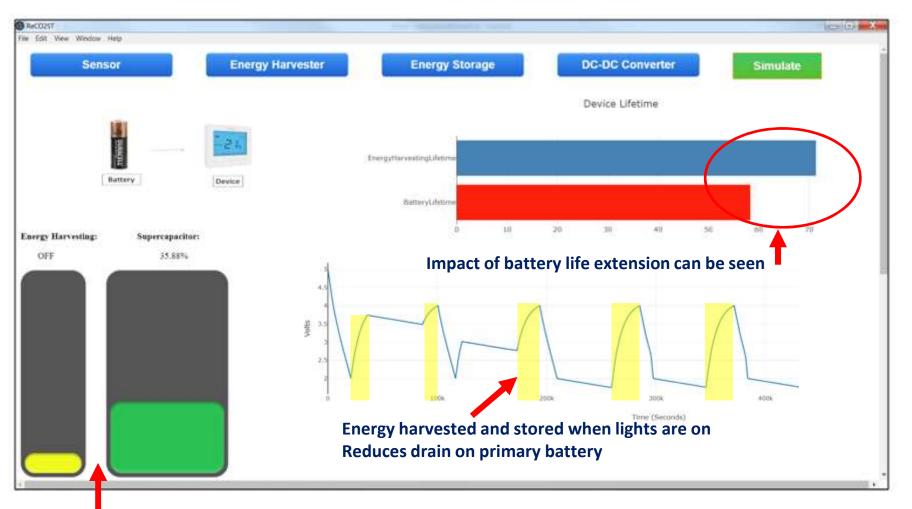
- 4 Switch QR Non Inverting Buck-Boost Power Path for 95% efficiency from 1uW to 10mW
- Mixed signal innovative architecture
- Extra low input voltage operation
- Asynchronous PWM Modes Generation
- Ultra efficient power path, gate drives and level shifters design
- 20nA Voltage Comparator
- 10ns Current Input Comparator
- 10ns High Side Voltage low voltage threshold Comparator
- Starved Inverter Ring Oscillators
- <100nA Cold Start: Oscillator/Charge Pump/Fractional reference system</p>
- SPI Master Configurable Mixed Signal (external Serial EEPROM)
- High speed analog event detect latches (power cycleable)
- Variety of Digital-to-time converters (DTC)
- Ultra Low Energy ADC Systems
- Asynchronous master control state machines

•

MISCHIEF - What's next?

- Expecting receipt of 1st Si samples in Oct verify simulation results
- Developing variant for med tech applications (Irish government funded project HOLISTICS)
- Planning to develop a system on chip combining MCU & PMIC functionalities
- Developing lots of circuit block for energy harvesting and storage developers under EnABLES JRAs and TAs to improve system level performance
- Preparing plans for 2nd generation development
- Always interested in finding new collaborations, feel free to contact me

RoUBUST Battery life Assistance Tool


Help installers select hardware components for a potential energy harvesting deployment No Energy Harvesting or wireless sensors expertise needed

Newest version of ROWBUST on EU ReCO2ST project will also give overall battery life estimate

Dynamic visual aid to see charge and discharge on supercap when lights are on/off

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and Interfactory Integration and AutomaTION

- Creating a digital automation framework (IIMS) that optimizes the manufacturing processes by exploiting existing data, knowledge and tools to increase productivity and dynamically adapt to changing market requirements.
- Development of middleware that enables inter-operably between systems was pivotal to the project (several of the partners are here today)
- **Tyndall role:** Supply expertise in WSN at component, device and system integration level for both modelling and real time operation of the use cases (particularly retrofit of self-powered sensors for inter-factory use cases)
- Gave us opportunities to show value add of wireless sensors with 2 use cases

Industry 4.0 Uses Case

Condition Monitoring (CM)

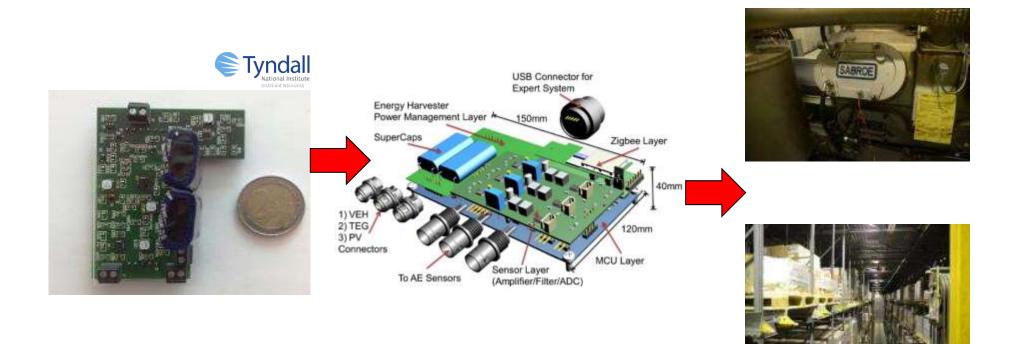
- Retrofit of wireless acoustic sensors that 'listen' to the oven blowers (fans) – detection of failure.
- Algorithms developed to accurate calculation of risk of fan failure to weeks/months
- Just 5 sensors need to monitor a cluster of 32 fans
- Move from Scheduled to Predictive Maintenance
- Estimate cost of a fan failure during production is ~ €40K (material waste + downtime)

In future projects

- Make the sensor self powered or at least make the battery last longer ٠
- Look at 'roaming' CM system applications ٠ (rather than static)

Advancing science for life[™]

Asset Tracking


- Ability to quickly track assets, e.g. inspection microscopes, using off the shelf sensors
- Tyndall expertise used to select and install hardware, feed required data to other COMPOSITION partners
- Retrofitted PV Energy Harvesting to Beacons that doubled battery life from 260 to 550 days

In future projects

- Self-power the sensors eliminate battery maintenance
- Integrate emerging technologies that enable size reduction
- e.g. fit on trays or unobtrusively into equipment
 - (RF protocols, power management, sensors, batteries)
- Integrate emerging technologies that improve range/accuracy

Multi source harvester

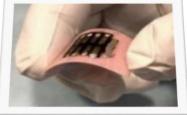
Use light, vibration or heat from compressor to self-power a 'diagnostic unit' Does predictive maintenance on cold room compressor & food storage rooms

Indoor solar powered 'Nod'

Interactive sensor to help optimize comfort in an office/factory

60% battery life extension achieved

Could become self powered as RF and air quality sensor technologies evolve

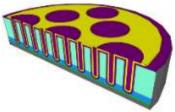


Come join our Ecosystem

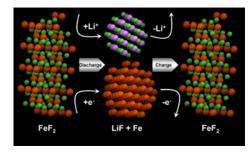
- Our Transnational Access program gives
 - Free of charge access to expertise & laboratories
 - Feasibility studies

(paper, simulation, characterisation, proto)

EU Project 730957


Sign Up at <u>www.enables-project.eu</u> to follow our activities or to register an enquiry

- Joint Research Activities are creating
 - System optimised, application orientated solutions
 - De-risked & standardised methodologies & library parts


Check out

Our publications: https://www.enables-project.eu/outputs/

This also has our template for standardising parts development

(Si embedded storage)

(Printed batteries)

What problems can we help you solve?

Thank You!

Acknowledgements

• This work was sponsored by the following projects

ENTERPRISE

• We would like to take this opportunity to thank the ICT4EE team at Tyndall and all our EU project partners