Consorzio Nazionale Interuniversitario per la Nanoelettronica IUNET

SMART TLC PLATE

Prof. Giampiero de Cesare

Department of Electronic Engineering University of Rome "La Sapienza"

Here we are

The Group

- Professors:
 - Prof. Giampiero de Cesare
 - Prof. Domenico Caputo
 - Prof. Augusto Nascetti
- PhD Students:
 - Ing. Riccardo Scipinotti

Collaborators:

Ing. Matteo Ceccarelli Ing. Roberto Intrieri

- External collaborations:
 - Prof. C. Manetti, Dept. of Chemistry, University of Rome "La Sapienza"
 - Prof. C. Fanelli, Dept. of Plant Biology, University "La Sapienza"
 - Dott.ssa A. Ricelli, CNR Institute of Biomolecular Chemistry
 - Dott. M. Tucci, ENEA CRE Casaccia, Anguillara

- Materials: properties of amorphous silicon
- **Devices**: stacked structure of different amorphous silicon layers
 - UV-vis photosensor
 - Single and multicolor photodetector
 - Solar cell
 - Stress sensor
- Systems: application of a-Si:H devices
 - Optoelectronic

Facilities

- Device Design and Simulation
 - DIFFIN (a-Si:H devices), FEMLAB, ORCAD, DESSIS, CADENCE
- Process Technologies
 - Deposition
 - Lithography
 - Etching
- Device Characterization
 - Electrical (Cryostat for low-T, I-V, C-V, transient response)
 - Optical (Quantum efficiency, Absorption Coefficient)

Deposition Technologies

- 3-chamber UHV PECVD (a-Si:H)
- Thermal Evaporation Unit
- Sputtering Unit
- Spin Coaters
- Electroplating system

Patterning

- Litography
 - Photoplotter Unit
 - Mask Aligner (up to 30cm×30cm)
 - Spin coaters

- Etching
 - 2-chamber Reactive Ion Etching Unit
 - Sputter Etching Unit
 - Chemical Bench for wet etching processes

SMART TLC PLATE

BUSINESS LAB project supported by FILAS for spin-off opportunity

Chromatography

- Chemical-physical method for separating different components of a mixture
- Stationary phase
- Mobile phase

Different affinity of components

• Traditional methods: Gas Cromatography (GC), High Perfomance Liquid Cromatography (HPLC),

Thin Layer Cromatography (TLC)

Thin Layer Chromatography

System for detection of chromatographic run

- Real-time
- Quantitative analysis
- Low cost

Amorphous silicon photodiode array integrated with TLC plate

 $I_{ph} = \sigma \cdot P_{INC} \approx Analyte concentration$

SMART Glass

Tuning and testing of the system

Detection system

Chromatographyc chamber

Hardware

Acquisition and A/D conversion

IIC

UNIVERSAL SERIAL BUS

Software

Chromatographic chamber

- Chemical inert material: TEFLON
- Horizontal run

Electrical part

Sensor array with electrical contacts

Chromatographic chamber

Chemical part

Reservoir for the mobile phase —

Chromatographic chamber

Sensor arrays

Sensor modeling and fabrication

- Specifications:
 - Low dark current (I_{dk}) for better SNR
 - Photoresponse not sensitive to the excitation light
 - Quantum efficiency spectral matched to the analyte emission spectra
- Modeling
 - Numerical a-Si:H device simulator

Experimental details

- Excitation light
 - UV LEDs: NSHU550A from Nikia Corporation
- Emission peak a 375 nm
 Analyte

 Fluorescein dissolved in ethanol
 Emission peak a 514 nm

 Emission peak a 514 nm

Sensor characterization

• Analyte: no

• Wetting silica gel: sigmoidal behavior

• Analyte: fluorescein

• Fluorescein signal: Gaussian behavior

- Analyte: green highlighter + fluorescein
- Mobile phase: ethanol

- Analyte: green highlighter + fluorescein
- Mobile phase: ethanol

- Analyte: fluorescein at different concentrations
- Mobile phase: ethanol

- Analyte: fluorescein at different concentrations
- Mobile phase: ethanol

- Analyte: fluorescein at different concentrations
- Mobile phase: ethanol

Food quality control

- Ocratoxin A (OTA) micotoxin present in wine, in beer, in raw coffe.
- Law limit: 2 ppb

Food quality control (OTA)

• Minimum detectable limit: ~0.05 ng/µl

- SMART GLASS as innovative chromatographic system
 - TLC plate
 - linear array of amorphous silicon sensors
- Application
 - real-time monitoring
 - quantitative analysis
 - Food quality control (OTA)

