Beyond CMOS IU.NET in search of the next switch Giuseppe Iannaccone, U. Pisa

... "Beyond CMOS" ...

From ITRS 2003

Risk

First Call of FP7 (dec 2006) After ENIAC SRA 2005

• "More Moore":

beyond 32 nm, digital SoCs

"More than Moore":

heterogeneous SoPs

• "Beyond CMOS":

non-FET-based logic and memory (and their integration with CMOS).

From ITRS 2013

A Taxonomy for Nano Information Processing Technologies

From ITRS 2013 Taxonomy of options for emerging logic devices

State variable

...We have nothing Beyond CMOS...

Are we already beyond CMOS?

2001 - 130 nm Silicon SiO₂ – poly Planar [2D]

140nm

Lg = 70nm

2014 -14 nm Strained Si/Ge HKMG - 3D

From ITRS 2013 - PIDS chapter [my note: PIDS = More Moore]

Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Nano-wire MOSFETs																
Enhanced transport with alternate channels: III-V or/and Ge																
Enhanced transport with alternate channels: Carbon-based CNT & graphene																
÷ .																
Enhanced transport with alternate channels: 2-D crystals (MoSi2, BN)																
Tunnel FET (TFET)																
Non-CMOS Logic Devices and Circuits/Architectures																
Research Required																
Develapment Lindenway																
Qualification / Pre-Production																
Continuous Improvement																

IUNET Projects with focus on ""Beyond CMOS""" (logic)

- Nanosil (FP6):
 - Nanowire Transistors, graphene, Tunnel FETs
- GRAND (FP7):
 - Graphene-based devices: GFETs and GNRFETs
- Steeper (FP7):
 - Tunnel FETs
- GRADE (FP7):
 - Graphene-based devices: GFETs and GBTs

QCA

Pre-IUNET: Quadrant (FP4), Answers, NanoTCAD (FP5), Sinano (FP6)

QCA

Also 1

SpinFET

example

Non

FET

SET

Single Molecule

SpinFET

Main role of IUNET in "Beyond CMOS" projects

Use modeling and simulation to

- propose new device concepts,
- Explore technology options,
- Benchmark and optimize device and technology proposals

Main role of IUNET in "Beyond CMOS"

True multisciplinarity required: Engineering + Physics + Chemistry

Use modeling ar a sh.....

- propose new device concepts,
- Explore technology options,
- Benchmark and optimize device and technology proposal

We should try to be competitive also in characterization and fabrication

TFET principle of operation

Credit: Figure from A. C. Seabaugh, Q. Zhang, Proc. IEEE 98, 2095 (2010)

Tunnel FET

- Main promise: low V_{DD} operation → Low DPI
- Small gap is an advantange \rightarrow higher I_{ON}

Figure Credits: Ionescu et al. Nature 479, 329 (2011)

InAs TFET optimization to meet ITRS 2020

Beneventi et al. IEEE TED 61, 778 (2014) - BOLOGNA

		ITRS 2020		OPT-DMG				
spec	LSTP	LOP	HP	LSTP	LOP	HP		
$V_{\rm DD}$ [V]	0.67	0.53	0.68	0.5	0.5	0.5		
$I_{\rm OFF}$ [nA/ μ m]	0.01	5	100	0.01	5	100		
$I_{\rm ON}$ [mA/ μ m]	0.600	0.784	1.916	1.322	1.650	1.985		
$I_{\rm ON}/I_{\rm OFF}$	6.0×10^{7}	1.5×10^{5}	1.9×10^{4}	1.3×10^{8}	3.3×10^{5}	2×10^{4}		
τ (multi-gate) [ps]	0.58	0.35	0.19	0.94	0.68	0.31		

Heterojunction III-V TFET Modeling: UDINE con MC + BTBT (WKB) Experiments: Dewey et al., IEDM 2011

Inverters with InAs/AlGaSb TFETs

- **3D** Full-band quantum simulation with V_{DD} = 0.25 V
- **10x faster** than 10 nm FINFET for LOP (same I_{OFF})
- 100x faster than 10 nm FINFET for LSTP (same I_{OFF})

E. Baravelli et al. IEEE TED 61, 473 (2014) - BOLOGNA

Ge e-h Bilayer TFET

- Tunneling occurs only when subbands are aligned
- Alper et al., TED 60, 2013 (UDINE+EPFL)

Ge e-h Bilayer TFET

- VB aligns with L → ph-assisted BTBT
- VB aligns with Γ → direct BTBT
- steep transitions !

 on-current dominated by direct BTBT

Alper et al., TED 60, 2013 (UDINE+EPFL)

Bi₂Se₃ TFET

oxide

3D atomistic quantum simulation

L_{UD}

gate

L_G

		source	intrins	ic Bi ₂ Se ₃	drain	
	2014 LP MG MOSF	ET InAs T	FET	2QL BiSe TFET		
Ch. length (nm)	13	15		10+15		
V _{DD} (V)	0.57	0.3		0.2		
I _{on} (A/m)	794	15		48		
DPI (fJ/μm)	0.18			0.018		
$\tau = CV_{DD}/I \text{ (ps)}$	0.4			1.84		

Q. Zhang et al - EDL 35, 129 (2014) - PISA

Bilayer Graphene TFET

Energy Gap ~0.2 eV Small VDD = 0.1-0.2 eV Band engineering to reduce I_{OFF} Experiments in progress

G. Fiori, G. Iannaccone EDL, Nov. 2009

Graphene-based devices The zero energy gap in graphene is The Problem (transistor cannot be switched off) Graphene nanoribbons cannot work; - require single-atom control (huge gap variations) - have low mobility Induced gap too small (e.g. bilayer gap < 0.2 eV)

 Focus on: Vertical and Lateral Heterostructure Devices

AND IN CONTRACTOR

Graphene Barristor

2 nm

Ideality Factor

~1.1

Slicon

10⁻⁶

K. Yang, Science 2012 (SAIT,Columbia U., Samsung) D

the acc are (Nanal

Letter

pubs.acs.org/NanoLe

Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers

Liam Britnell,[†] Roman V. Gorbachev,[‡] Rashid Jalil,[‡] Branson D. Belle,[‡] Fred Schedin,[‡] Mikhail I. Katsnelson,[§] Laurence Eaves,^{||} Sergey V. Morozov,[⊥] Alexander S. Mayorov,[†] Nuno M. R. Peres,^{#,V} Antonio H. Castro Neto,^{∇} Jon Leist, Andre K. Geim,^{†,‡} Leonid A. Ponomarenko,[†] and Kostya S. Novoselov^{*,†}

Britnell et al. Nano Letters 2011 Britnell et al. Science 2011

Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures

L. Britnell,¹ R. V. Gorbachev,² R. Jalil,² B. D. Belle,² F. Schedin,² A. Mishchenko,¹ T. Georgiou,¹ M. I. Katsnelson,³ L. Eaves,⁴ S. V. Morozov,⁵ N. M. R. Peres,^{6,7} J. Leist,⁸ A. K. Geim,^{1,2}* K. S. Novoselov,¹* L. A. Ponomarenko¹*

Lateral heterostructure

G. Fiori, G. Iannaccone, Patent Appl. 2011, IEDM 2011, ACS Nano 2012

Lateral G-BN Heterostructures

LHFET Experimental Demonstration Moon et al. (HRL), EDL 34, 1190, 2013

Multi-scale Modeling

- A multi-scale approach for the simulation of nanoscale devices with selfextraction of tight-binding parameters from ab-initio simulations
- DFT (Materials modeling)
 Quantum Espresso
- 2. Wannier 90
- 3. NEGF-TB

NanoTCAD ViDES

Graphene LHFET - vs ITRS 2012

Graphene-base hot electron transistor

S. Vaziri et al. (KTH,U. Siegen, IHP) Nano Letters 2012

Optimized design of the GBT

- 1D model for GBT electrostatic and currents
- Self consistent Electrostatics:
- Tunnelling currents including
 Energy distribution of carriers
 in emitter and base
 accounted for
- Cut-off frequency (f₇)
 estimated with quasi-static
 approach
- Montecarlo model for the simulation of base current in GBTs

EBI Graphene BCI Emitter BCI Collector Substrate K Collector K BCI Collector Collector Collector

S. Venica et al. TED 61, 2570 (2014) - UDINE

GBT optimization

- THz operation possible
- Si emitter GBT → Si band bending lowers EBI → Larger band bending for larger k value
- Metal emitter GBT → lower k results in lower capacitance
 S. Venica et al. TED 61, 2570 (2014)

Graphene Base Heterojunction Transistor (GBHT)

- Impact of different orientations and materials (Si/Ge)
- Sensitivity to doping concentrations
- Effect of graphene base resistance (f_{MAX})
- Inclusion of ionized impurity scattering in Si

V. Di Lecce et al. , TED60, 4263 (2013) - BOLOGNA

GHBT Impact of doping, materials

THz Operation Possible

• Si and Ge provide comparable performance

V. Di Lecce et al., TED60, 4263 (2013)

Other 2D materials

Boron Nitride

Molybdenum disulfide

Next – other 2D materials ?

G. Fiori et al. Nature Nanotechnology, to appear 2014

Velocity saturation in MoS₂

G. Fiori et al., APL, 103, 233509, 2013 – Pisa and AMO

All in "Beyond CMOS"

Giorgio Baccarani Emanuele Baravelli **Alessandro Betti** Giovanni Betti Beneventi Samantha Bruzzone Martina Cheli Teresa Cusati Valerio Di Lecce Francesco Driussi David Esseni **Gianluca** Fiori Elena Gnani Antonio Gnudi **Roberto Grassi Giuseppe Iannaccone** Demetrio Logoteta **Massimo Macucci Paolo Marconcini**

Paolo Michetti Pierpaolo Palestri Susanna Reggiani Luca Selmi Stefano Venica Qin Zhang

Several colleagues from cademia and Industry

Funding projects: FP7 GRADE FP7 STEEPER FP7 GRAND FP7 NANOSIL H2020 E2SWITCH MIUR GRANFET

Thank you