

Trends in «More than Moore» and IUNET activity

Andrea L. Lacaita

Ouline

• Pervasion domains: Moore+MtM

- The Italian MEMS «pilot line»
 LAB4MEMS challenges and results
- Conclusions

The expanding universe of electronics...

From sensing nodes to cloud

Converging trends

Ouline

• Pervasion domains: Moore+MtM

- The Italian MEMS «pilot line»
 LAB4MEMS challenges and results
- Conclusions

MEMS Market Forecast

Source:	Yole	April	2014
---------	------	-------	------

Device	2013-18
	CAGR
Micro displays	57,80%
Oscillators	52,70%
Microfluidics for research	34,80%
Inertial combos	28,40%
PIR and thermopiles	23,50%
Microfluidics for IVD	23,10%
Projection systems	17,70%
Microdispensers	16,30%
Others	16,10%
RF MEMS	15,50%
Microphones	13,20%
Microbolometers	12,50%
Other optical MEMS	10,00%
Pressure sensors	7,70%
InkJet heads	1,10%
Accelerometers	-3,40%
Gyroscopes	-3,70%
Digital compass	-5,10%

MEMS Market players

\$ 600,0

\$ 500,0

\$ 400,0

\$ 300,0

\$ 200,0

\$ 100,0

\$ 0,0

2009

2010

2011

2012

Source: Yole 2014

Lab4MEMS

Lab4MEMS aims to establish a European Pilot Line for innovative technologies on **advanced piezoelectric** and **magnetic materials**, including **advanced Packaging** technologies to meet the ever evolving market needs.

Planar AMR devices

3 axis magnetometers

Experimental results and modeling

t = 50nm samples

Symbols = exp. data — Lines = sim. results

AMR physical model

L. Gan et al. IEEE Trans on Magnetics (2000)

AMR readout chain

- Switching power mode to mitigate power dissipation
- Amplifier bandwidth of 45kHz

Figure of Merit - Magnetometers

Device	±FSR [μT]	Noise [µT]	Band [Hz]	Current [µA]	FoM [nT·mA/√Hz]
STM LIS3MDL	1.6	0.4	10	90	11.7
Bosch BMM150	1.3	0.3	5	170	22.8
Freescale MAG3110	1.0	0.3	0.75	57	2.0
Asahi Kasei AK8975	1.2	0.3	4	117	17.5
Honeywell HMC5883	0.8	0.2	3.75	33	3.4
AMR	2.0	0.1	50	145	2.0

performance per sensing axis

Lorentz Magnetometer

Parallel-plate capacitors are designed inside the device

 $\frac{\Delta C}{C_0} = \alpha \cdot \mathbf{Q} \cdot \mathbf{L} \cdot \mathbf{i} \cdot \mathbf{B}_z$

Lorentz Magnetometer Design

Sensitivity improves by lowering the damping factor - b:

Lorentz readout chain and drive

Figure of Merit - Magnetometers

Device	±FSR [μT]	Noise [μT]	Band [Hz]	Current [µA]	FoM [nT·mA/√Hz]
STM LIS3MDL	1.6	0.4	10	90	11.7
Bosch BMM150	1.3	0.3	5	170	22.8
Freescale MAG3110	1.0	0.3	0.75	57	2.0
Asahi Kasei AK8975	1.2	0.3	4	117	17.5
Honeywell HMC5883	0.8	0.2	3.75	33	3.4
AMR	2.0	0.1	50	145	2.0
Lorentz	2.4	0.4	50	135	8.0

performance per axis

Lab4MEMS

Lab4MEMS aims to establish a European Pilot Line for innovative technologies on advanced piezoelectric and magnetic materials, including advanced Packaging technologies to meet the ever evolving market needs.

Demonstration Device		
Fully integrated print-head		
Piezo electric energy harvester		UniBO
Ultrasonic microphones		
AMR Magnetic sensors (3 axis)		
Lorentz type Magnetometer (3 axis)		
Photonic Crystal piezo actuator	-	

piezo power converters

Synchronous Electric Charge Extraction

Synchronous Electric Charge Extraction (SECE)

Multi source piezo harvester

Performance Comparison with SoA

Work	No. OF SRCs	Source Type	Max. INPUT VOLTAGE	Power conversion technique	ESTIMATED CURRENT CONSUMPTION (@5V SUPPLY)	RANGE OF Harvested Power	Self- starting	TECHNOLOGY	Electrical Efficiency
Ramadass, IEEE JSSC 2012	1	Piezo	5 V	SSHI	1 uA	10 – 100 uW	Yes	Integrated	85%
Krihely, IEEE TPEL 2011	1	Piezo	12 V *	SSHI	7 uA	3.96 uW	Yes	Discrete	80%
Elliot, Eurosensors 2012	1	Piezo	n.a.	SSPB	80 uA	3 uW	n.a.	Discrete	n.a.
Kong, IEEE TPEL 2012	1	Piezo	≈10 V	DCM Flyback	20 – 80 uA	8.4 uW	Yes	Discrete	72%
Colomer, IEEE T.Ind.El. 2011	4	Piezo, RF, PV, TEG	2.5 V	Parallel-connected LDOs	30 uA	6.4uW	Yes	Integrated	52-85%
Ferrari, S&A 2008	3	Piezo	n.a.	Parallel-connected passive rectifiers	passive.	32 uW *	Yes	Discrete	n.a.
UNIBO	3	Piezo	20V	SECE with shared inductor	3 – 10 uA	300uW	Yes	Discrete	74%
UNIBO design target	5	Piezo	5V	SECE with shared inductor	< 200 nA	5uW – 1 mW	Yes	Integrated	80%

Lab4MEMS

Lab4MEMS aims to establish a European Pilot Line for innovative technologies on advanced piezoelectric and magnetic materials, including advanced Packaging technologies to meet the ever evolving market needs.

Demonstration Device	
Fully integrated print-head	
Piezo electric energy harvester	
Ultrasonic microphones	
AMR Magnetic sensors (3 axis)	
Lorentz type Magnetometer (3 axis)	
Photonic Crystal piezo actuator	UniPi

Phononic Crystals

1D 2D 3D

Periodic modulation of one or more mechanical properties

- elasticity ۲
- density
- cross section

Resonant mass sensing in Lab4mems

Flexural vibration modes - piezoelectric actuation and detection

Resonant mass sensing in Lab4mems

Flexural vibration modes - piezoelectric actuation and detection

Resonant mass sensing in Lab4mems

Flexural vibration modes - piezoelectric actuation and detection

Flexural PC design

Five mask process (backside cavity, metal1, piezo, metal2, fronside etch)

Performance Comparison with SoA

Sensor type	Quality factor	Mass/area sensitivity (Hz/Hz)/(kg/m²)	Operating frequency (MHz)
Quarz Crystal Microbalance (QCM)	>10000 (air)	1	10
Capacitive CMOS	7000 (vac)	1000 (in vac)	3
Surface Acoustic Wave (SAW)		60	500
Film bulk acoustic resonators (FBAR)	1100 (air)	30	300
Piezoresistive NEMS	900 (vac)	2600 (in vac)	127
Proposed Ph-C sensor	10000 (vac)	>10 (50)	10

Conclusioni

• H2020 – applicazioni pervasive e clouding

• MEMS – dispositivi e microsistemi

• La Pilot Line italiana e IUNET