

Giornata IU.NET 18 Settembre 2014

Gallium Nitride HEMTs: advantages, opportunities and challenges

Gaudenzio Meneghesso

Andrea Cester, Matteo Meneghini, Enrico Zanoni, University of Padova, Department of Information Engineering, via Gradenigo 6/B, 35131 Padova, Italy gaudenzio.meneghesso@unipd.it

Outline

- Introduction & GaN properties
- Applications opportunities
- Open issues
 - Materials
 - Technology (E-Mode, Breakdown, Vertical vs lateral,)
 - Parasitic & Reliability
- GaN Activities within IU.NET
- Conclusions

Introduction to the GaN-HEMTs

Back to the material properties:

	GaN	InN	AIN	Si
Bandgap (eV)	3.4 eV	0.6 eV	6.4 eV	I.I eV
Mobility (cm ² V ⁻¹ s ⁻¹)	1500	3000	300	1000
Breakdown Field (MV/cm)	3	Low	П	0.3
Effective Mass	0.21 m _e	0.09 m _e	0.4 m _e	0.19 m _e
Velocity (cm/s)	2 x 10 ⁷	2 × 10 ⁸	-	1.0 x 10 ⁷
Polarization	High charg			

[1] U. K. Mishra, P. Parikh, Y.F. Wu, "AlGaN/GaN HEMTs—An Overview of Device Operation and Applications" IEEE Proc. Vol. 90, No. 6, p. 1022, June 2002.

[2] U. K. Mishra, L. Shen, T. E. Kazior, Y. F. Wu, "GaN-Based RF Power Devices and Amplifiers" IEEE Proceedings, Vol. 96, No. 2, p. 287, February 2008.

3

Introduction to the GaN-HEMTs

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

UNIVERSITY OF PADOV

Introduction & Motivations

ADVANTAGEOUS IN POWER-SUPPLY CIRCUITS

HIGH OPERATING TEMPERATURE DUE TO LARGE BANDGAP AND HIGH POTENTIAL BARRIER

http://www.edn.com/Pdf/ViewPdf?contentItemId=4409627

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

DEPARTMENT OF INFORMATION ENGINEERING

5

Introduction to the GaN-HEMTs

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

UNIVERSITY OF PADOVA

GaN: Polar material

O. Ambacher et al JAP 87, 334 (2000) O. Ambacher et al. J.Appl. Phys. 85, 3222 (1999)

7 DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVA

GaN: Polar material

UNIVERSITY OF PADOVA

GaN: Polar material

UNIVERSITY OF PADOVA

9

GaN HEMTs: 2DEG w/o doping!

UNIVERSITY OF PADOVA

GaN HEMTs: 2DEG w/o doping!

O. Ambacher et al JAP 87, 334 (2000) O. Ambacher et al. J.Appl. Phys. 85, 3222 (1999)

generalized gradient approximation (GGA) plasma-induced molecular beam epitaxy (PIMBE)

A. Chini, R. Coffie, G. Meneghesso, E. Zanoni, D. Buttari, S. Heikman, S. Keller, and U. K. Mishra
"A 2.1A/mm Current Density AlGaN/GaN HEMT"
IEE Electronics Letters, vol. 39, N. 7, April 2003, pp. 625-626

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

12

Figure of Merit in semiconductors

Table 1 Figures of merit of various semiconductors

	Si	GaAs	4H-SiC	GaN
JFM	1	11	410	790
KFM	1	0.45	5.1	1.8
BFM	1	28	290	910
BHFM	1	16	34	100

JFM : Johnson's figure of merit for high frequncy devices = $(EbVs/2\pi)^2$

KFM : Keyes's figure of merit considering thermal limitation= $\kappa (EbVs/4\pi\epsilon)^{1/2}$

BFM : Baliga's figure of merit for power switching = emEg³

BHFM : Baliga's figure of merit for high frequency power switching = μEb^2

Comparison of R_{on} for Si, SiC and GaN

GaN-HEMTs capabilities: proven!

[3] Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder and P. Parikh "40-W/mm Double Field-plated GaN HEMTs", Device Research Conference, 151, 2006

15

GaN-HEMTs capabilities: proven!

40 W Gallium-Nitride Microwave Doherty Power Amplifier

Kyoung-Joon Cho, Wan-Jong Kim, Jong-Heon Kim*, and Shawn P. Stapleton

School of Engineering Science, Simon Fraser University *Department of Radio Science & Engineering, Kwangwoon University

the GaN Doherty amplifier yielded a power gain over 12 dB from 1.8 GHz to 2.5 GHz, and 65 % power added efficiency at 40 W peak power. A good linearity of - 55 dBc ACPR was

Fig. 1. Simplified diagram for linearity and efficiency of Doherty amplifier

Fig. 6. Measured output power, gain and PAE of a GaN HEMT Doherty power amplifier

[5] IEEE MTT-S Dig., 2006, pp. 1895-1898.

GaN-HEMTs capabilities: proven!

IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 3, MARCH 2010

AlGaN/GaN HEMT With 300-GHz $f_{\rm max}$

Jinwook W. Chung, William E. Hoke, Eduardo M. Chumbes, Member, IEEE, and Tomás Palacios, Member, IEEE

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

UNIVERSITY OF PADOVA

Outline

Introduction & GaN properties Applications opportunities Open issues Materials Technology (E-Mode, Breakdown, Vertical vs lateral,) Parassitic Reliability □ GaN Activities within IU.NET Conclusions

Efficienza Energetica

conversione^eOggigiorno, oltre il 10% dell'energia elettrica globale viene completamente persa a causa dell'inefficienza dei sistemi di conversione."

Chart: EIA U.S. Electric Power Generation

At the moment there are more than 400 nuclear power plants all over the world, which produce about 17% of the world's electricity. http://www.icjt.org/an/tech/jesvet/jesvet.htm

Perdere il 10 % di energia elettrica e' equivalente a sperperare l'energia prodotta da più di 200 centrali nucleari.

POWER APPLICATIONS

Efficiency of present inverter : 80~ 90% 10~20% loss still remains !! mainly due to the limitation of material properties of Si

20

Ultra-low loss inverter is a key device for next-generation energy saving society

Breakdown Voltage vs On-Resistance

IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 8, AUGUST 2008

A 97.8% Efficient GaN HEMT Boost Converter With 300-W Output Power at 1 MHz

Yifeng Wu, Matt Jacob-Mitos, Marcia L. Moore, and Sten Heikman

GaN HEMTs for high efficiency power electronics

99.3% Efficiency of three-phase inverter for motor drive using GaN-based Gate Injection

23

UNIVERSITY OF PADOVA

99.3% Efficiency of three-phase inverter for motor drive using GaN-based Gate Injection TransistorsApplied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE 2011, Page(s): 481 – 484

Status of the GaN MMIC Technology in Europe

GaN 50 (0,5 µm) 0.5..6 GHz

Products at UMS: hybrid process

GaN 25 (lg= 0,25 µm) to 20 GHz

Products and further development

GaN 10 (lg=0,10 µm) 20 GHz-94 GHz

Development at IAF

Power electronics at various players

Outline

Introduction & GaN properties Applications opportunities Open issues □ Materials Technology (E-Mode, Breakdown, Vertical vs lateral,) Parassitic Reliability □ GaN Activities within IU.NET Conclusions

No GaN substrates available!!

GaN/AlGaN Epitaxy good but not enough!

Good structural quality heterostructure confirmed at the atomic scale

SiC Substrates (2"-4")

- Very expensive (2-5-kE 4", 6")
- Good thermal conductivity
- Good mismatch

Sapphire Substrates (2"-6")

- Cheap (0,5kE 2" 4") - poor thermal conductivity
- Good/poor mismatch

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

INIVERSITY OF PADOVA

GaN on Si (6" - 8")

The use of Si_xN_v interlayers in GaN grown on sapphire substrates is very successful and a dislocation density reduction by two or three orders of magnitude has been reported. However, it is not straightforward to implement Si_xN_v interlayers in GaN grown on Si due to the large thermal mismatch between GaN and Si.

- -Cheap and large diameter
- good/poor thermal conductivity
- bad mismatch

GaN growth always a difficult task! ◆Substrates for GaN Epitaxy

	GaN Sapphire	GaN n SiC	GaN S.I. SiC	GaN Bulk-GaN	GaN Silicon	GaN 3C SiC Silicon	GaN Glass
Epiwafer providers	TDI Hitachi Cable NTT Kyma OptoGaN AZZURRO	CREE TDI Hitachi Cable NTT	CREE Hitachi Cable NTT Toyoda Gosei AZZURRO IQE,Kopin Picogiga	Sumitomo SEI Kyma LumiLOG Samsung-corning Hitachi Cable AZZURRO	Nitronex AZZURRO Picogiga IMEC IQE NTT DOWA	Toshiba Ceramic (TOCERA)	BlueGlass
Device maker	Lumileds Osram Nichia Toyoda Gosei Velox	CREE Osram	CREE Fujistu RFMD NXP Freescale NEC, TriQuint	Sony Nichia NEC Toyota	Nitronex OKI TriQUINT MicroGaN, ST, IR, Sanken,Fuji GaN system	R&D	R&D
Application	Blue/white LED, power devices	Blue/white LED	RF devices	Blue/violet laser diode, power devices	Power devices ,RF,LED	RF devices Power devices	Blue/white LED

Ref.:Website of Yole

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

31

Outline

Introduction & GaN properties Applications opportunities Open issues Materials Technology (E-Mode, Breakdown, Vertical vs lateral,) Parassitic Reliability □ GaN Activities within IU.NET Conclusions

32

Normally OFF

Breakdown measurements

 The breakdown voltage of AlGaN/GaN HEMTs can be evaluated by pulsed ID-VD measurements
 When BDV is reached → Snapback, due to degradation, hot spots
 The junction can degrade even before BDV.

Pulsed ID-VD breakdown measurements

DEPARTMENT OF INFORMATION ENGINEERING

UNIVERSITY OF PADOVA

35

Typical Breakdown in GaN HEMTs

Breakdown measured in voltage controlled mode is very abrupt. (no sustainable breakdown present in GaN HEMTs)

36

UNIVERSITY OF PADOVA

Field-plate Optimization

Field-plate reduces electric field

- Increase breakdown voltage
- lower electron injection into traps less dispersion

Schematics of GaN HEMTs with Various FP Configurations

Very high blocking voltage with compact size

$$\label{eq:gal_scalar} \begin{split} & \text{Fig.1} \qquad \text{Schematic structure of HEMTs with the hetero-structure consisted of the} \\ & \text{Al}_x\text{Ga}_{1,x}\text{N} \text{ channel layer and the Al}_y\text{Ga}_{1,y}\text{N} \text{ barrier layer } (\text{Al}_y\text{Ga}_{1,y}\text{N}/\text{Al}_x\text{Ga}_{1,x}\text{N}, y > x). \end{split}$$

Takuma Nanjo et al, "Remarkable Breakdown Voltage Enhancement in AlGaN Channel HEMTs", **IEDM** 2007

Semicond. Sci. Technol. 28 (2013) 074014 (8pp)

INVITED REVIEW

Current status and scope of gallium nitride-based vertical transistors for high-power electronics application^{*}

Vertical vs Lateral GaN HEMT

Invited Review

Srabanti Chowdhury¹, Brian L Swenson², Man Hoi Wong³ and Umesh K Mishra⁴

Figure 4. (a) A lateral AlGaN/GaN power HEMT (b) A vertical transistor using AlGaN/GaN layer structure on bulk GaN drift layer and substrate.

Outline

- Introduction & GaN properties
- Applications opportunities
- Open issues
 - Materials
 - Technology (E-Mode, Breakdown, Vertical vs lateral)
 - Parassitic & Reliability
- □GaN Activities within IU.NET
- Conclusions

43

UNIVERS

PROCEEDINGS OF THE IEEE, VOL. 90, NO. 6, . 1048- 1058, JUNE 2002

GaN HEMTs - G. Meneghesso- Giornata IU.NET - 18 Settembre 2014

44

The Drain Current Transient analysis comprehensively investigate the **time evolution** of carrier (de)trapping processes. The deep-levels signatures – activation energies and capture cross-sections – and their localization can be achieved by performing the measurements under different bias conditions and different base-plate temperatures.

45

Gate edge degradation due to the high filed. Structural degradation has been identify (Traps, percolation path, increase on resistance)

Activity at Power Electronic (PEL) Group - UniPD

P. Tenti, L. Rossetto, G. Spiazzi, S. Buso, P. Mattavelli L. Corradini

10

- 10 120 V \geq 160 V 10 80 \ $R_{DSon} = 25 \text{ mW}$ 10 0 1 2 3 4 5 6 Time [s] x 10⁻⁵
- **Design and implementation of** optimized switching cells for device parameter in-circuit characterization Realization of a Pont of Load (PoL) converters using GaN devices

'MENT OF

Parasitic and Reliability (UniMO) UNIMORE

GaN HEMTS RF Characterization and Stress Tests

Both large-signal and small-signal RF characterization is carried out in order to evaluate device performance. RF stress are also carried out for reliability investigation

Breakdown Phenomena Investigation

Parasitic and Reliability (UniMO)

Preliminary results on non-optimized large-periphery devices tested by applying short (1us) voltage pulses at the drain terminal.

UNIMORE

UNIMORE Parasitic and Reliability (UniMO+UniPD)

A: pre-stress B: neutral GaN:UID traps (no e⁻) & neg. GaN:C traps (no h⁺)

B to C: e⁻ capture into GaN:UID traps C: neg. GaN:UID traps & neg. GaN:C traps C to D: h⁺ capture into GaN:C traps

Breakdown (UniMO + UniPD) UNIMORE

For Vg=-6.5V, at least three different breakdown/leakage mechanisms take place:

1)1st BK: BTB, Impact Ionization, Poole-Frenkel related or something else? 2)2nd BK: Back-barrier electron transfer 3)3rd BK: BTB tunneling between drain & substrate

UNIVERSITY OF PADOV

Simulation of a GaN-on-Si power HEMT in off-state up to breakdown – Comparison against literature data

F. Monti, D. Cornigli, S. Reggiani, E. Gnani, A. Gnudi, G. Baccarani

Simulations with both electron and hole impact-ionization contributions Deep acceptor levels in the GaN buffer (0.4 eV above midgap) with a steplike distribution at 0.4 um from the surface

Simulation of vertical leakage/breakdown in GaN-on-Si buffers up to 150°C – Comparison against literature data

Modeling Self-Heating Effects in AlGaN/GaN HEMT

A. N. Tallarico, P. Magnone, E. Sangiorgi, C. Fiegna

 The TBR (thermal boundary resistance), between GaN layer and SiC substrate is modeled according to [1].

56

UNIVERSITY OF PADOVA

PMI (physical model interface) implemented in Sentaurus TCAD [2]
 [1] A. Sarua et al., *IEEE Trans. Electron Devices*, 2007
 [2] A. N. Tallarico, SISPAD, 2014

Modeling Self-Heating Effects in AlGaN/GaN HEMT

Drain-lag simulations accounting for both self-heating and traps at AlGaN/Nitride interface

The current overshot is linked to the transient of donor traps which is time-reduced and amplitude-increased for higher temperatures.

Two different transients:
the first is intrinsic to the donor-traps,
the second transient is a temperature-driven effect (activated at T ≈ 540 K).

E2COGaN - Unical Contribution

1/f noise measurements on GaN devices

- Design and prototyping of instrumentation for low-frequency noise characterization
- ➤ Measurements of 1/f noise of gate and drain currents
- \blacktriangleright Evaluating trap density from 1/f noise in fresh and stressed devices

E2COGaN - Unical Contribution

Advanced HTRB characterization

- > Individual device mini-heater for HTRB test with true constant T_C
- Individual stress-sense procedure up to a preset degradation threshold
- Large number of devices tested in parallel for statistical evaluation

Progetti Europei - Contratti - Collaborazioni

http://www.alinwon-fp7.eu/fp7/

http://www.hiposwitch.eu/

http://www.e2cogan.eu/

60

