Un biochip per elettrostimolazione cellulare

A. Paccagnella, G. Cellere, L. Bandiera

Dipartimento di Ingegneria dell’Informazione
Università di Padova

Bertinoro, 24/11/2005
Outline

• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
• **Introduction & background**

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
Introduction & background

• *Biotechnology means any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.*

 (definition by the UN Convention on Biological Diversity)

• Biotechnology is nothing really new

 – First farmers selected crops (peas, barley, wheat) in Fertile Crescent in 8000 B.C.

 – Insulin produced from genetically modified bacteria *Escherichia Coli* since 1978 (Genentech)
Introduction & background

• More and more Biotech drugs are blockbusters
 – An example: Epogen (Erythropoietin) introduced by AMGEN in 1989
 – World sales of EPO: 10B$ in 2004

• Is gene therapy behind the corner?
 – Control disease-causing genes on a person-to-person basis

• For a genetic-related disease, need to understand
 – Has gene XXX a role?
 – What if it is suppressed?
 – What if over-expressed?
 – …and so on…
Introduction & background

• Our aim: developing innovative microelectronics tools for molecular biology

• A field under growing interest
 – Microfluidics
 – DNA identification (DNA microarrays)
 – Quantitative assays (ELISA, RT-PCR, Q-PCR, …)
 – Single cell manipulation
 – Recording of electrical activity of living cells
 – Proteomics (protein microarrays)
 – Implanted devices (not just pacemakers...)
 – …
• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
The single cell electroporation biochip

• A theoretical experiment…
 – You are a biologist studying the function of a gene implied in Alzheimer disease
 – Your models are rat neurons growing in vitro
 – The gene must be activated only in this neuron
The single cell electroporation biochip

- Several methods are available to force the expression of a given gene in cultured cells
 - Chemical
 - Viral
 - Mechanical
- All of these work in a population of cells
 - Results averaged over the population
 - Large spread of statistical data
 - Unable to modify a single cell in a culture
The single cell electroporation biochip

- Realize an array of microelectrodes on a silicon biochip
- Cultivate cells on chip surface
- Apply a voltage to one electrode
 - The voltage is transferred to the cell growing above the electrode
 - Temporary pores open in the cell membrane (electroporation)
 - Molecules in solution enter the cell cytoplasm
 - The membrane reseals
The single cell electroporation biochip

• A GFP (Green Fluorescent Protein)-encoding plasmid is inserted into a single CHO cell (el. 22)

• After 24h, the selected cell divided: both daughter cells express the GFP
The single cell electroporation biochip

- Any pattern can be realized in the same way
• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
Electrical model of the biochip

- An electrical model is needed in order to
 - Design effective and non invasive electroporation stimuli
 - Allow reliable operation of the device

\[(1-\alpha)Z_{el} + \alpha Z_{el} + Z_{cell} \]

Electrical model of the biochip

- Electrode impedance
 - Charge transfer resistance R_t
 - Double layer capacitance C_e
 - Constant phase element C_{pe}
 (electrochemical system nonlinearities)

$L. \text{Bandiera, et al, IEDM, 2007.}$

\[Z_e(f) = R_t + rac{1}{j \omega C_e} + rac{1}{1 + j \omega C_{pe}} \]

$L. \text{Bandiera, et al, IEDM, 2007.}$

Bertinoro, 24/11/2005
Electrical model of the biochip

- To study for example what happens to the potential on the cell membrane when it is not exactly above the electrode we need a distributed model.

- Spatially Distributed Transfer Network approach
 - The electrode - electrolyte - cell system is divided in a grid.
 - Each grid branch is described by an impedance whose value is derived from the concentrated model.

- Similar to finite element methods (FEM) but no linearization of equations is needed (not at this stage).
Electrical model of the biochip

- How is distributed the voltage above the electrode?

• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
Monitoring cell-electrode adhesion

• Some questions
 – Is it possible to detect the presence of a cell by using electrical measurements only?
 – Is it possible to quantitatively evaluate the quality of cell adhesion?

• Use EIS (Electrochemical Spectroscopy Impedance) measurements over a limited frequency rage

Monitoring cell-electrode adhesion

- Impedance @66kHz for different electrodes of the same chip

\[\Delta Z = \frac{Z_{\text{with cell}} - Z_{\text{without cell}}}{Z_{\text{without cell}}} \]

- If \(\Delta Z > 20\% \), we can assume that a cell is adhering to the electrode

Monitoring cell-electrode adhesion

- Changing the stimulation voltage changes the stimulus effect on the membrane.

No change in morphology
High cell viability

Morphology change
Low cell viability

• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
Other related activities

• Fluorescence-based DNA microarrays are used to understand the expression of many genes at once

• Drawbacks of microarrays:
 – Not reusable
 – No information on hybridization kinetics
 – Low signal-to-noise ratio
 – Expensive

• DNA molecule carries an intrinsic negative charge
 – Can we develop an all-electrical system to quantify gene expression?
ISFET-based DNA sensor

- First implementation: ISFET
 - Ion-Sensitive Field-Effect-Transistor
 - Basically, a MOSFET without the metal gate
 - Gate oxide (SiO_2-Si_3N_4 stack) is exposed to solution

Ag/AgCl reference electrode
ISFET-based DNA sensor

- Step 1: depose (positively charged) poly-L-lysine (PLL) on gate oxide
- $Q_{PLL} = (1.5\pm0.65)\times10^{-4}\text{C/m}^2$
ISFET-based DNA sensor

- STEP 2: deposit probe (known) DNA
- DNA carries a negative charge → V_{TH} shifts rightward

![Graph showing changes in V_{TH} during PLL adsorption, Probe DNA adsorption, and DNA denaturation with respective charges of $-34 \times 10^{-4} \text{C/m}^2$, $-18 \times 10^{-4} \text{C/m}^2$, and $1.5 \times 10^{-4} \text{C/m}^2$.]

Bertinoro, 24/11/2005
ISFET-based DNA sensor

- Step 3: deposit target (unknown sequence) DNA
 - Matching \rightarrow V_{TH} shift
 - Non matching \rightarrow nothing happens

\[
C_{b,cDNA}(t) = C_{sat} \cdot (1 - e^{-a \cdot t})
\]

\[
C_{sat} = 20 \text{[pmol/cm}^2\text{]}
\]

\[
a = 5 \cdot 10^{-3} \text{[s}^{-1}\text{]}
\]
• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
EGFET-based DNA sensor

- ISFET are
 - Very sensitive to solution and to process conditions
 - Expensive devices (~CMOS process flow in small batches)

- move to simpler devices: EGFET
 - Extended Gate FET

Solution

Gold microelectrode

Ag/AgCl reference electrode
EGFET-based DNA sensor

- Thiol-modified DNA adsorption onto gold microelectrode
- V_{TH} increases due to DNA negative charge

$V_{solution} = 0$ (GND)
$V_B = V_S = -2$
$V_D = V_S + 100 \text{mV}$

$V_g [V]$
$Id [A]$
• Introduction & background

• A biochip for genetic manipulation of single-cells
 – The single cell electroporation biochip
 – Electrical models of the biochip
 – Monitoring cell-electrode adhesion

• Other related activities
 – ISFET-based DNA sensors
 – EGFET-based DNA sensors

• Conclusions
Conclusions

• Innovative tools for biological applications
 – Electrical stimulation if living (cultured) cells
 – Electrical detection of DNA sequence

• Our research interest
 – HW/SW design
 – Electrical modeling
 – Reliability

• Work in close collaboration with biology and nanoscience
 – A stimulating and challenging interdisciplinary environment!
 – CIVEN, Fisiology Dept., CRIBI, FBK, VIMM, Biosilab, Columbia Univ.