GaN and Ga₂O₃ power switching devices in lateral and vertical topology: Technologies and application possibilities

Joachim Würfl Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik Gustav-Kirchhoff-Strasse 4 12489 Berlin – Germany

Email: joachim.wuerfl@fbh-berlin.de

IUNET Workshop, September 11th, 2020

Outline

- Introduction
- Lateral devices
 - GaN, AIN, AIScN and Ga₂O₃ devices
 - Device technology
- Vertical devices
 - GaN and Ga₂O₃
- Conclusions

What makes Wide Bandgap Devices (WBG) attractive?

High bias voltage combined with high current density at a given geometrical dimension

- \rightarrow compact, low weighted systems
- \rightarrow high power levels at high frequencies
- \rightarrow low internal capacitances feature fast switching

Comparison of device families

Drift length to achieve certain breakdown voltage

	Si	4H-SiC	GaN (epi)	GaN (bulk)		Jakuov	wir vollage
Band gap energy E _g (eV)	1.1 ind.	3.26 ind.	3.42 dir.	3.42 dir]		
Dielectric constant	11.9	10.1	9	9		Į	
Electron mobility µ _e (cm²/Vs)	1350	900	1150	1150			þ
* In 2-DEG at AIGaN / GaN heterojunction			(2000)*	(>2000)*			
Electric breakdown field E _{crit} (10 ⁶ V/cm)	0.3	2.2	3.3	3.3		Silicon	GaN
Saturation velocity v _{sat} (10 ⁷ cm/s)	1.0	2.0	3	3] `_		
Thermal conductivity κ (W/Kcm)	1.5	4.9	1.3	2.3	← M	/ould be	e motivation al GaN
Baliga FOM BFM _{Si} (εμE _{crit} ³) [1]	1	223	190 (330)*	850 (1480)*	< d	evices	
Johnson FOM JFM $ _{Si}$ ($v_{sat}^2 E_{crit}^2$) [2]	1	215	400	1090	K		
Maximum estimated operation temperature T _{max} (°C)	200	500	500	500			

[1] B.J. Baliga, "Semiconductors for High-Voltage, Vertical Channel Field-Effect Transistors," *J.Appl.Phys.*, vol.53, no.3, pp.1759-1764, 1982

[2] Physical limitations on frequency and power parameters of transistors, RCA Review, vol. 26, pp. 163-177, June 1965.

* In 2-DEG

New GaN devices promise fast and efficient power switches

R_{on} x Q_g:

measure for efficient switching properties

Requirements for efficient switches:

- Low dynamic on-state resistance
- Small gate charge

Advantages of GaN power switching devices against Si

GaN efficiency advantage comes through

- Replacing Si by GaN power devices in combination with system level changes
- Increase slew rate and switching frequency
- Circuit topology to be optimized for GaN

Taken from Steve Tom, Texas Instruments: GaN drives energy efficiency to the next level (<u>https://www.electronicdesign.com/power-</u> <u>management/gan-drives-energy-efficiency-next-level</u>)

Actual and potential GaN application areas (TI view)

GaN power device market size split by application

Source:

Power GaN 2017: Epitaxy, devices, applications and technology trends 2017 report, Yole Developpement, October 2017

Industrial GaN power activities

GaN Power electronics: General targets

- Low on-state resistance
 → outperforming other device families
- High breakdown voltage (up to 1000V)
- Threshold voltage V_{th} > +1 V
- Large gate voltage swing > 3 V
- Low leakage currents
- Reproducible process
- Reliability
- In same cases: Radiation hardness

Most important: Good dynamic witching properties

Substrates for GaN devices

Lattice matching of epi-layers, substrates

Taken from	S.W.	Kaun,	Semicond.	Sci.	Technol.	28	(2013)	074001
------------	------	-------	-----------	------	----------	----	--------	--------

	GaN bulk	SiC	Al ₂ O ₃ Sapphire	Si (111)
Lattice mismatch (%)	0	3.1	13	
Thermal Conductivity (W/cmK)	2.3	4		1.48
Availability / Price				
Potential for high volume production				

Substrates for GaN devices

Lattice matching of epi-layers, substrates

Taken from S.W. Kaun, Semicond. Sci. Technol. 28 (2013) 074001

GaN-on-Si epitaxy: Methods of strain compensation

Left image: According to T. Ueda, "Recent advances and future prospects on GaN-based power devices," International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA), 2014, pp. 2075-2078, 18-21.

Leibniz Ferdinand Braun Institut

Epitaxial layers towards high breakdown devices

Optimization of epitaxial layer design (1): General considerations

Avoid electron punch-through at high voltage pinch-off

- \rightarrow Confine electrons in channel
- \rightarrow Provide suitable potential barriers
 - AlGaN-buffer
 - C-, Fe- doping....

In case of conductive substrate:

- Avoid vertical breakdown
- Use proper buffer material and thickness

FBH p-GaN normally-off technology (1)

GaN-on-Si HFET

- Normally-off technology, threshold about +1 V
- Designed for 60 mΩ on-state resistance
- 600 V switching capability

Example: Monolithically integrated half-bridge

FBH p-GaN normally-off technology (2)

60 mΩ, 600 V normally-off Devices: normally-off properties

- Device periphery 214 mm, GaN-on-SiC
- Chip size: 9 mm²
- Threshold voltage +1.5 V

Transfer characteristics (linear)

Transfer characteristics (half log)

- Good turn-off at 0 V gate bias
- Maximum current 120 A

Bi-directional operation capability

- Devices also operate in reverse mode
- This feature might be implemented in novel system / circuit architectures

Comparison FBH power GaN vs. Infineon CoolMOS

FBH GaN normally-off device

	FBH GaN normally-off	Infineon CoolMOS*
	600 V / 60 mΩ	
C _{ISS} (300 V)	90 pF	3000 pF
C _{OSS} (300 V)	35 pF	50 pF
C _{RSS} (300 V)	2.5 pF	6 pF
E _{OSS} (400 V)	5 µJ	8 µJ
Q _G (100 V)	15 nC	64 nC
R _{on} x Q _g	0.98 nCΩ	4.5 nCΩ

*): 650 V 70 m \pounds C7 CoolMOS in ThinPAK, Infineon IPL65R070C7

Gate charge and $R_{on} \times Q_{G}$ reduced by a factor of 5

- Compared on the basis of nominally the same operation current, on-state resistance and voltage capability
- Significantly reduced input capacitance, feed-back capacitance comparable

Infineon CoolMOS

20

Comparison FBH power GaN vs. Infineon CoolMOS

FBH GaN normally-off device

	FBH GaN	Infineon
		COOIMOS
	600 V / 60 m22	
C _{ISS} (300 V)	90 pF	3000 pF
C _{OSS} (300 V)	35 pF	50 pF
C _{RSS} (300 V)	2.5 pF	6 pF
E _{OSS} (400 V)	5 µJ	8 µJ
Q _G (100 V)	15 nC	64 nC
R _{ON} x Q _G	0.98 nCΩ	4.5 nCΩ

*): 650 V 70 m \pounds C7 CoolMOS in ThinPAK, Infineon IPL65R070C7

Gate charge and $R_{on} \times Q_{G}$ reduced by a factor of 5

- Compared on the basis of nominally the same operation current, on-state resistance and voltage capability
- Significantly reduced input capacitance, feed-back capacitance comparable

Infineon CoolMOS

GaN vs. CoolMOS: Output capacitance

 Small variation of GaN output capacitance with drain voltage

G. Deboy, IEDM 2016, pp 532-535

New GaN devices promise fast and efficient power switches

R_{on} x Q_g:

measure for efficient switching properties

Requirements for efficient switches:

- Low dynamic on-state resistance
- Small gate charge

New GaN devices promise fast and efficient power switches

R_{on} x Q_g:

measure for efficient switching properties

Requirements for efficient switches:

- Low dynamic on-state resistance
- Small gate charge

Dynamic effects temporary increase on-state resistance

This needs to be understood and harnessed

Dynamic on-state resistance increase after high voltage switching: **Measurement** principle

Test set-up for measuring dynamic Ron

High voltage switching tests (practically ideal devices)

time [s]

15.0µ

20.0µ

0.0

Dynamic on-state resistance increase after high voltage switching: Measurement principle

Test set-up for measuring dynamic Ron

High voltage switching tests (early devices)

Dynamic on-state resistance: Physics behind

Appearance of negative charges next to 2DEG as a consequence of device biasing history

- In semiconductor and passivation layer(s)
- Due to electron trapping after off-state biasing
- Due to release of deep acceptors

Dynamics of trapping depends on:

- Biasing conditions
 - Maximum bias voltage
 - Backside (substrate) potential
- Timing of on- and off-state biasing
 - Off state time (\rightarrow trapping)
 - On-state time (\rightarrow de-trapping)
 - Continuous switching
- Temperature

Therefore: Device mission profile is decisive

Ideal device: No trapping effects

Real device:

Trapped negative charges close to 2DEG

Half-bridge topology

Integrated half-bridge solution

Back-gating and trapping after backside potential change

Integrated half-bridge switching: A problem which is not yet really solved

- Source of top transistor changes potential after turn-on of bottom transistor
 - Causes static back-gating and dynamic effects
 - Different finger prints of epi-technologies observable

Back-gating and trapping after backside potential change

Integrated half-bridge switching: A problem which is not yet really solved

- Source of top transistor changes potential after turn-on of bottom transistor
 - Causes static back-gating and dynamic effects
 - Different finger prints of epi-technologies observable

Effective equipotential ground position differs from epi to epi

Monolithically integrated driver solutions

Motivation

- To reduce parasitic inductivities
- To realize faster and more precise switching

S. Moench et al.: 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2015, pp. 92-97.

Bidirectional 600 V GaN HFETs

- 600 V device with bidirectional functionality
 - Matrix converter for direct AC-AC conversion
 - T-type converter for DC-AC conversion
- Double R_{ON} in (Si-based) vertical 600 V technology

Drift zone 2

G1

p-GaN

S1/D2

Drift zone 1

AIGaN barrier

GaN channel

GaN buffer

Si substrate

Bidirectional GaN HFET

GaN HFET integration

Drift zone

AIGaN barrier

GaN channel

GaN buffer

Si substrate

Unidirectional GaN HFET

- One drift region used for both directions

G

p-GaN

Bidirectional 180 m Ω / 600 V GaN HFET

- 600 V device with bidirectional functionality
- 5% larger R_{ON} as for unidirectional HFET
- Symmetrical switching transients

40

Leibniz

Braun Institut

Ferdinand

Losses in fast switching power converters

Also passives have switching losses

- Low transistor switching losses thanks to GaN
 - \rightarrow higher switching frequency
- → Ferrite core inductor magnetizing losses increase with frequency
 - Magnetizing losses eventually dominate

- Air core inductors have low inductance per volume but no magnitizing losses
- Air core inductors need less volume for converter frequencies > 10 MHz

VHF converter with Fe-free inductor

- Half bridge and gate drivers on one chip (FBH 0.25 µm GaN MMIC process)
- 100 MHz switching frequency
- No coils with magnetic materials → air coils
- 87% power efficiency for 30 V / 14.5 W

Chip size: 2.5 x 1.7 mm²

2 air coils à 0.5 µH

AIN-Devices: Highly efficient for power and mm-wave electronics

	Si	SiC	GaN	AIN
E _g (eV)	1.1	3.0	3.4	6.2
V _{br} (MV/cm)	0.3	2.4	3.3	> 5
λ (W/cmK)	1.5	4.5	3.2	3.4

AIN-devices:

- Compact design
- High thermal conductivity
- High current density
- Highly insulating buffer
- Potentially low dispersion??
- Monolithic integration

FBH project "LeitBAN" (German ministry of science and technology)

Development chain

Millimeter wave devices

- 150 nm gate length
- Modelling transistors and passive structures
- Exisiting GaN power amplifier MMICs layouts
- Existing GaN low noise amplifier MMICs layouts

HV power devices

All devices

- 92 mm gate width → 150-200 mΩ devices
- 18 μ m gate-drain separation \rightarrow 1200 V
- No overlapping field plates (no 2nd SiN) to keep off-state leakage low
- Source connected FP version "FP7"
- New Kelvin-source pads introduced for 90° rotated bond wires between gate drive circuit and power circuit

41

AIN buffer power switching benchmarking 2019

AIN buffer power switching benchmarking 2020

- Improved AIN buffer quality gives higher V_{Br}
- Thicker GaN channel gives lower R_{ON}

AIScN devices

Advantages:

- High spontaneous polarization difference to GaN
 → high 2 DEG electron density
 - \rightarrow up to 2.4 A/mm current density
- MOVPE growth possible
- Lattice matched to GaN with Al_{0.82}Sc_{0.18}N combination
- Technology still has to be developed

🖌 2 nm GaN cap

2 nm AlN IL

S. Leone: J. Appl. Phys. 127, 195704 (2020); doi: 10.1063/5.0003095

1.0

0.2

0.0

Green et al.: IEEE Electron Device Letters, Vol. 40, no. 7, July 2019

β -Ga₂O₃: Comparison to other semiconductor devices

	Si	GaAs	4H-SiC	GaN	β-Ga ₂ O ₃
Band gap energy E _g (eV)	1.1	1.4	3.26	3.4	4.6-4.9
Electric breakdown field E _{crit} (10 ⁶ V/cm)	0.3	0.4	2.2	3.3	8 (est.)
Relative dielectric constant ϵ_r	11.9	12.9	10.1	9	10
Thermal conductivity k (W/Kcm)	1.5	0.55	4.5	2.3	0.23 in [010] dir. 0.13 in [100]
Bulk electron mobility μ _e (cm²/Vs)	1350	8000	900	1200	300
Saturation velocity v _{sat} (10 ⁷ cm/s)	1.0	2.0	2.0	3	not published in detail
Baliga´s FOM related to Si ($\epsilon_r \mu_e E_{crit}^3$)	1	15	340	870	3444

M. Higashiwaki et al: Appl. Phys. Lett., 100, 013504, (2012)

Ga₂O₃ device development chain. Wafering and epitaxy

Process and epi optimization

Critical technological steps

- Epitaxy: Properties strongly depend on device orientation (anisotropy of electron mobility and thermal conductivity
- Processing
 - Lithography on small wafers (1x1cm²)
 - Gate oxide technology in conjunction with gate recess (ALD Al₂O₃)
 - Ohmic contacts (n⁺ doping using Ge⁺ Implantation)
 - Device isolation (N⁺ -Implantation)

Example of lateral device technology (1): Substrate, epi and processing

Substrates

- 1x1 cm² Ga₂O₃ Mg compensated substrate
- Special technological approach for wafer stepper lithography

Processing sequence:

- Gate recess etching
- AID Al₂O₃ gate insulator deposition
- SiN_x deposition (1st passivation)
- Isolation implantation
- Gate trench etching (gate length 0.7 μm)
- Gate metal deposition (TiAu)
- SiNx deposition (2nd passivation)
- Opening of contact windows
- Interconnect metal deposition

Example of lateral device technology (2): DC device results

- Extremely low leakage
 - Gate leakage < = 10⁻¹¹ A/mm
 - Drain leakage < 10⁻¹⁰ A/mm
- On-off ratio > 10⁸
- Negligible hysteresis of MIS gate
- Drain current > 120 mA/mm
- On-state resistance 70 Ωmm → 185 Ωmm as LGD increases from 2 to 10 µm

IEEE Electron Device Letters, Vol. 40, No. 9, September 2019

Example of lateral device technology (3): Device breakdown

- Breakdown linearly scales with gate
 / drain distance
- Breakdown field around 200 MV/cm

Very good trade-off between breakdown voltage and on state-behaviour

IEEE Electron Device Letters, Vol. 40, No. 9, September 2019

State-of-the-art and comparison to other device families

Vertical devices

Depletion or accumulation type device

- Significant advantages:
 - Voltage drop over epitaxial layer if device is turned off – ideal separation of high potentials
 - Requires lower chip area at high voltage levels
- Disadvantages
 - Controlled n⁻-doping for drift zone less than 1x10¹⁶ / cm³ depending on targeted voltage level
 - Requires new concepts for edge termination and control of high-field region at trench bottom sidewall

Example of vertical device technology (2): processed FinFET

(b)

(d)

High voltage engineering

- Field plates tom suppress critical field regions (backed with FE simulations)
- Optimized layout for high voltage
 - Rounded structures to avoid E-field crowding

Taken from: Proceedings of the 31st International Symposium on Power Semiconductor Devices & ICs May 19-23, 2019, Shanghai, China

GaN verticval trench MISFETs for direct laser driving

- Idea: Reduce parasitic inductances by developing an ultrafast "electronic valve"
- Chip-on-chip hetero integration
- Requires "true vertical" GaN devices

Test of mounting schemes for heterointegration

Heterointegration of laser, GaN transistor and capacitors on AIN submount (~ 7x7 mm²)

- Laser GaN switch heterointegration
 - High-speed core with integrated capacitors
 - Mounted on AIN interposer

Impressive results obtained

- Scaling concept works

 → Current density of up to 4000 A/cm² obtained with moderate scaling concepts
- Nearly hysteresis free devices
 → gate technology development made good progress

Cip-on-chip mouinting vertical GaN – diode laser

Conclusions

GaN power switching devices reached high maturity – world wide

- Optimum device switching at high voltage is still an quality characteristics
 it is very different for different device vendors
- New material schemes are coming up: AIN, AIScN....

High switching speed of GaN power devices has been demonstrated

- Monolithic and hybrid integration techniques necessary to further increase speed
- However: Monolithic integration of half bridges still a problem especially for high voltage applications

Future developments

- Hybride and monolithic integration schemes \rightarrow think in terms of high frequency
- High voltage vertical GaN devices
- Gallium oxide lateral and vertical devices

