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What makes Wide Bandgap Devices (WBG) attractive? 

High bias voltage combined with high current density at a given geometrical dimension 
 

 compact, low weighted systems 

 high power levels at high frequencies 

 low internal capacitances feature fast switching 

 

Microwave electronics Power electronics 

WBG microwave 

electronics 

WBG power 

electronics 

Volume production    

New possibilities for innovative systems 

“Only works with WBG” 

In future: 

 

Power 

Electronics meets 

Microwaves 
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Comparison of device families 

Si 4H-SiC GaN 

(epi) 

GaN 

(bulk) 

Band gap energy Eg (eV) 1.1 ind. 3.26 ind. 3.42 dir. 3.42 dir 

Dielectric constant 11.9 10.1 9 9 

Electron mobility µe (cm²/Vs) 

* In 2-DEG at AlGaN / GaN heterojunction 

1350 900 1150 

(2000)* 

1150 

(>2000)* 

Electric breakdown field Ecrit (106 V/cm) 0.3 2.2 3.3 3.3 

Saturation velocity vsat (107 cm/s) 1.0 2.0 3 3 

Thermal conductivity k (W/Kcm) 1.5 4.9 1.3 2.3 

Baliga FOM BFM|Si (εμEcrit
3)    [1] 1 223 190 

(330)* 

850 

(1480)* 

Johnson FOM JFM|Si  (vsat
2Ecrit

2)   [2] 1 215 400 1090 

Maximum estimated operation  temperature 

Tmax (°C) 

200 500 500 500 

* In 2-DEG 

[1]  B.J. Baliga, "Semiconductors for High-Voltage, Vertical Channel Field-Effect Transistors,“  

 J.Appl.Phys., vol.53, no.3,  pp.1759-1764, 1982 

[2] Physical limitations on frequency and power parameters of transistors, 

 RCA Review, vol. 26, pp. 163-177, June 1965.   

Would be motivation 

for vertical GaN 

devices 

Silicon GaN 

Drift length to 

achieve certain 

breakdown voltage 
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New GaN devices promise fast and efficient power switches 

Ron x Qg: 

 measure for efficient switching properties 

 

Requirements for efficient switches: 

 Low dynamic on-state resistance 

 Small gate charge 

 

 

 

 

 
GaN normally-on 
GaN normally-off 
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o

n
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g 
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C
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Advantages of GaN power switching devices against Si 

GaN efficiency advantage comes through 

 Replacing Si by GaN power devices in 

combination with system level changes 

 Increase slew rate and switching frequency 

 Circuit topology to be optimized for GaN 

Taken from Steve Tom, Texas Instruments: GaN drives energy 

efficiency 

to the next level (https://www.electronicdesign.com/power-

management/gan-drives-energy-efficiency-next-level ) 
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Actual and potential GaN application areas (TI view) 
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GaN power device market size split by application 

Source: 

 

Power GaN 2017: Epitaxy, devices, 

applications and technology trends 2017 

report, Yole Developpement, October 

2017 
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Industrial GaN power activities 
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GaN Power electronics: General targets 

 

 Low on-state resistance  
 outperforming other device families 

 High breakdown voltage (up to 1000V) 

 Threshold voltage Vth > +1 V 

 Large gate voltage swing > 3 V 

 Low leakage currents 

 Reproducible process  

 Reliability 

 

 In same cases: Radiation hardness 

 

 

VGS  

I D
 

 

Vth 

VGS  

I D
 

 

Vth 

Standard 

GaN HEMT 

Normally-off 

GaN HEMT 

Most important:  

Good dynamic witching properties 
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Substrates for GaN devices 

Taken from S.W. Kaun, Semicond. Sci. Technol. 28 (2013) 074001 

GaN 

bulk 

SiC Al2O3 
Sapphire 

Si (111) 

Lattice mismatch (%) 0 3.1 13 17 

Thermal Conductivity 

(W/cmK) 

2.3 4 0.3 1.48 

Availability / Price 

Potential for high 

volume production 

Lattice matching of epi-layers, substrates 
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Substrates for GaN devices 

Taken from S.W. Kaun, Semicond. Sci. Technol. 28 (2013) 074001 

GaN 

bulk 

SiC Al2O3 
Sapphire 

Si (111) 

Lattice mismatch (%) 0 3.1 13 17 

Thermal Conductivity 

(W/cmK) 

2.3 4 0.3 1.48 

Availability / Price 

Potential for high 

volume production 

Lattice matching of epi-layers, substrates 

The driving force for 

high volume 

GaN-on-Si devices 

High reliability 

microwave devices 
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GaN-on-Si epitaxy: Methods of strain compensation 

AlGaN barrier 

GaN 

AlN 

Si (111) substrate 

2DEG 

AlGaN 

GaN / AlN  

superlattice 

buffer 

Compressive 

strained layer 

Tensile 

strained layer 

Left image: According to T. Ueda, "Recent advances and future prospects on 

GaN-based power devices," International Power Electronics Conference 

(IPEC-Hiroshima 2014 - ECCE-ASIA), 2014, pp. 2075-2078, 18-21. 

AlGaN barrier 

GaN 

AlN 

Si (111) substrate 

AlGaN stepwise 

downgrading 
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Epitaxial layers towards high breakdown devices 

Avoid electron punch-through at high voltage 
pinch-off 

 Confine electrons in channel 
 
 

 

 

In case of conductive substrate: 

 Avoid vertical breakdown 

AlGaN barrier

GaN buffer layer

Conductive substrate

Vertical breakdown 

through buffer 

AlGaN barrier

Buffer layer

Conductive substrate

GaN channel

GS D

dGD

AlGaN barrier

Buffer layer

Conductive substrate

GaN channel

AlGaN barrier

Buffer layer

Conductive substrate

GaN channel

GS D

dGD

Punch-through 

effect 
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Optimization of epitaxial layer design (1): 

General considerations 

Avoid electron punch-through at high voltage 
pinch-off 

  Confine electrons in channel 

  Provide suitable potential       barriers 

 AlGaN-buffer 
 C-, Fe- doping…. 

 

In case of conductive substrate: 

 Avoid vertical breakdown 

 Use proper buffer material and thickness 
 

AlGaN barrier 

GaN channel 

Buffer layer providing  

potential barrier 

(GaN:C,  GaN:Fe, AlGaN) 

Nucleation layer 

Substrate 

(SiC, sapphire, Si) 

Drain Gate Source 

2DEG 
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FBH p-GaN normally-off technology (1) 

 Normally-off technology, threshold about +1 V 

 Designed for 60 mΩ on-state resistance 

 600 V switching capability 

Example: Monolithically integrated half-bridge 

GaN-on-Si HFET 

+ 

- 

M M 

+ 

- 

G1 

G2 

G1 

G2 
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FBH p-GaN normally-off technology (2) 

Gate,  

field plate  

1st, 2nd  

and 3rd  

passivation  

BCB  1 

AlGaN  

si-SiC, n-SiC or Si substrate  

2nd interconnect  

(electroplated Au)  

Multiple grating  

field plates 

Isolation  

implanted  

regions 

BCB  2 

High voltage buffer 

S D S 

p-GaN 
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60 mΩ, 600 V normally-off Devices: normally-off properties 

 Device periphery 214 mm, GaN-on-SiC 

 Chip size: 9 mm² 

 Threshold voltage +1.5 V 

Transfer characteristics (half log) Transfer characteristics  (linear) 

 Good turn-off at 0 V gate bias 

 Maximum current 120 A 
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Bi-directional operation capability 

 Devices also operate in 
reverse mode 

 This feature might be 
implemented in novel 
system / circuit 
architectures 

VGS: - 5 V to 0 V 

VGS = + 5 V 

Values taken at 1 µs and 3 

µs after turn-on of device 

VGS: + 1 V to + 5 V 

VDS (V) 

I D
 (

A
) 
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Comparison FBH power GaN vs. Infineon CoolMOS 

 Compared on the basis of nominally the same operation current, on-state 

resistance and voltage capability 

 Significantly reduced input capacitance, feed-back capacitance comparable 

 

FBH GaN normally-off device 
Infineon CoolMOS 

*): 650 V 70 mΩ C7 CoolMOS in ThinPAK, Infineon 

IPL65R070C7 

 

  FBH GaN 

normally-off  

600 V / 60 mΩ 

Infineon  

CoolMOS* 

CISS (300 V) 90 pF 3000 pF 

COSS (300 V) 35 pF 50 pF 

CRSS (300 V) 2.5 pF 6 pF 

EOSS (400 V) 5 µJ 8 µJ 

QG (100 V) 15 nC 64 nC 

RON x QG 0.98 nCΩ 4.5 nCΩ 

Gate charge and Ron x QG reduced 

by a factor of 5 
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Comparison FBH power GaN vs. Infineon CoolMOS 

 Compared on the basis of nominally the same operation current, on-state 

resistance and voltage capability 

 Significantly reduced input capacitance, feed-back capacitance comparable 

 

FBH GaN normally-off device 
Infineon CoolMOS 

*): 650 V 70 mΩ C7 CoolMOS in ThinPAK, Infineon 

IPL65R070C7 

 

  FBH GaN 

normally-off  

600 V / 60 mΩ 

Infineon  

CoolMOS* 

CISS (300 V) 90 pF 3000 pF 

COSS (300 V) 35 pF 50 pF 

CRSS (300 V) 2.5 pF 6 pF 

EOSS (400 V) 5 µJ 8 µJ 

QG (100 V) 15 nC 64 nC 

RON x QG 0.98 nCΩ 4.5 nCΩ 

Gate charge and Ron x QG reduced 

by a factor of 5 

CRSS 

CISS 

Coss 
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GaN vs. CoolMOS: Output capacitance 

 Small variation of GaN 
output capacitance with 
drain voltage 

G. Deboy, IEDM 2016, pp 532-535 

Si Superjunction 

technology 

GaN HEMT 

CRSS 

CISS 

Coss 
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New GaN devices promise fast and efficient power switches 

Ron x Qg: 

 measure for efficient switching properties 

 

Requirements for efficient switches: 

 Low dynamic on-state resistance 

 Small gate charge 

 

 

 

 

 
GaN normally-on 
GaN normally-off 
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New GaN devices promise fast and efficient power switches 

Ron x Qg: 

 measure for efficient switching properties 

 

Requirements for efficient switches: 

 Low dynamic on-state resistance 

 Small gate charge 

 

Dynamic effects temporary increase 
on-state resistance 

 

 
GaN normally-on 
GaN normally-off 
 
 

Breakdown voltage [V] 

R
o

n
 x

 Q
g 

[W
 n

C
]  

This needs to be understood 

and harnessed 
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Dynamic on-state resistance increase after high voltage switching: 

Measurement principle 

High voltage switching tests 
 (practically ideal devices) 

Test set-up for measuring dynamic Ron 

0 … 1000V 

VDS 

ID 

RLoad 

DUT 
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Dynamic on-state resistance increase after high voltage switching: 

Measurement principle 

High voltage switching tests 
 (early devices) 

Test set-up for measuring dynamic Ron 

0 … 1000V 

VDS 

ID 

RLoad 

Ron_dyn 

f (toff, ton, T, f) 

Pronounced on-state voltage 

drop due to increased dynamic 

on-state resistance 
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Dynamic on-state resistance: Physics behind 

Appearance of negative charges next to 2DEG 
as a consequence of device biasing history 

 In semiconductor and passivation layer(s) 

 Due to electron trapping after off-state biasing 

 Due to release of deep acceptors 

Dynamics of trapping depends on: 

 Biasing conditions 

 Maximum bias voltage 

 Backside (substrate)  potential 

 Timing of on- and off-state biasing 

 Off state time ( trapping) 

 On-state time ( de-trapping) 

 Continuous switching 

 Temperature 

 

Ideal device: 

No trapping effects 

Real device: 

Trapped negative 
charges close to 
2DEG 

Therefore: Device mission profile is decisive 
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Back-gating: Why is it critical?  

-VD 

+VD 

T1 

T2 
Z 

ID 

VDS 

Conductive substrate 

Active epitaxial layers 

-VD 
+VD T1 T2 

Z 

Half-bridge topology Integrated half-bridge solution 
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Back-gating: Why is it critical?  

-VD 

+VD 

T1 

T2 
Z 

ID 

VDS 

Conductive substrate 

Active epitaxial layers 

-VD 
+VD T1 T2 

Z 

Half-bridge topology Integrated half-bridge solution 
Charges on this 

capacitor cause 

backgating 

Equipotential 

ground 

ΔV ~ 0 V 
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Back-gating and trapping after backside potential change 

Integrated half-bridge switching:  
A problem which is not yet really solved 

 Source of top transistor changes potential after turn-on of bottom transistor 

 Causes static back-gating and dynamic effects 

 Different finger prints of epi-technologies observable 

Vbs 

Back-gating test scheme 
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Back-gating and trapping after backside potential change 

Integrated half-bridge switching:  
A problem which is not yet really solved 

 Source of top transistor changes potential after turn-on of bottom transistor 

 Causes static back-gating and dynamic effects 

 Different finger prints of epi-technologies observable 

Effective equipotential ground 

position differs from epi to epi 
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Monolithically integrated driver solutions 

Motivation 

 To reduce parasitic inductivities 

 To realize faster and more precise switching 

S. Moench et al.: 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2015, pp. 92-97. 
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Bidirectional 600 V GaN HFETs 

 600 V device with bidirectional functionality 

 Matrix converter for direct AC-AC conversion 

 T-type converter for DC-AC conversion 

 

 Double RON in (Si-based) vertical 600 V technology 

 GaN HFET integration 

 One drift region used for both directions 

G1 

G2 

T-type converter 

VDC

CDC

CDC
vout

bottom cell

top cell

400 V 

Matrix converter 
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Bidirectional 180 mW / 600 V GaN HFET 

 600 V device with bidirectional functionality 

 5% larger RON as for unidirectional HFET 

 Symmetrical switching transients 

M. Wolf et al. TED 2018 

unidirectional 

bidirectional (both directions) 

10 A / 400 V turn-off transient 

C. Kuring et al. ECCE 2018 

Off-state drain leakage RON for 96 mm devíce 
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Losses in fast switching power converters 
Inductor volume required for same 

converter performance Also passives have switching losses 

 

 Low transistor switching losses thanks to GaN 

       higher switching frequency 

 Ferrite core inductor magnetizing losses increase with frequency 

 Magnetizing losses eventually dominate 

 

Inductor (100°C) GaN switches (55°C) 

0.5 MHz GaN-converter 

 Air core inductors have low inductance 

per volume but no magnitizing losses 

 Air core inductors need less volume for 

converter frequencies > 10 MHz 
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VHF converter  

with Fe-free inductor 

 Half bridge and gate drivers on one chip 

(FBH 0.25 µm GaN MMIC process) 

 100 MHz switching frequency 

 No coils with magnetic materials  air coils 

 87% power efficiency for 30 V / 14.5 W 

 

2 air coils à 0.5 µH Chip size: 2.5 x 1.7 mm2 

inductor & 

load 

Power electronics 

meets microwaves 
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AlN-Devices: Highly efficient for power and mm-wave electronics 

AlN-devices: 

 Compact design 

 High thermal conductivity 

 High current density 

 Highly insulating buffer 

 Potentially low 
dispersion?? 

 Monolithic integration 

Si SiC GaN AlN 

Eg (eV) 1.1 3.0 3.4 6.2 

Vbr 

(MV/cm) 

0.3 2.4 3.3 > 5 

l 

(W/cmK) 

1.5 4.5 3.2 3.4 
Lateral AlN/GaN/AlN HFET 
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FBH project „LeitBAN“ (German ministry of science and technology)  

Complete value added chain from 

crystal to demonstrator 

Si or SiC substrate 

doped GaN buffer 

GaN-channel 

AlGaN barrier 

S D G 

Hetero epitaxy 
Defect density ~ 108-109/cm3 

Goal 

Power electronic 

demonstrator 

mm-wave MMIC 

Homo epitaxy on AlN 
Defect densisty ~ 104/cm3 

AlN crystal manufactured 

at Fraunhofer IIS-B 
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Development chain 

39 

SiC Substrate 

doped GaN buffer 

GaN channel 

AlGaN barrier 

S D G 

SiC Substrate 

AlN buffer 

GaN channel 

AlGaN barrier 

S D G 

AlN buffer 

GaN-channel 

AlN-barrier 

SiC substrate 

S D G 

AlN/GaN/AlN HFET 

(Hetero epitaxy) 

AlN buffer 

GaN-channel 

AlN-barrier 

AlN substrate 

S D G 

AlN/GaN/AlN HFET 

(Homo epitaxy) 

AlGaN/GaN/AlN HFET 

(Hetero epitaxy) 

AlGaN/GaN HFET 

(Hetero epitaxy) 



Millimeter wave devices 

 150 nm gate length 

 Modelling transistors and passive structures 

 Exisiting GaN power amplifier MMICs layouts 

 Existing GaN low noise amplifier MMICs layouts 
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HV power devices 

3x Half bridge 

(2x 92 mm) 

4x Bidirectional 

transistor 

4x Referenz transistor 

with Kelvin source 

92 mm 

4x Referenz transistor 

(old layout) All devices 

 92 mm gate width  150-200 mΩ 

devices 

 18 µm gate-drain separation  1200 V 

 No overlapping field plates (no 2nd SiN) 

to keep off-state leakage low 

 Source connected FP version „FP7“ 

 New Kelvin-source pads introduced for 

90° rotated bond wires between gate 

drive circuit and power circuit 
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AlN buffer power switching benchmarking 2019 

FP7, 19R12, S52, dGD = 15 µm, dSD = 17.2 µm 

 A = 1.72e-4 cm2 

 VBr = 1636 V 

 RON = 10.45 Wmm  RONxA = 1.797e-3 Wcm2 

VGS = -3 V 
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AlN buffer power switching benchmarking 2020 

 Improved AlN buffer quality gives higher VBr 

 Thicker GaN channel gives lower RON 

HS_L2, 21R02, S42, dGD = 15.2 µm, dSD = 17.2 µm 

 A = 1.72e-4 cm2 

 VBr = 1790 V 

 RON = 7.6 Wmm  RONxA = 1.315e-3 Wcm2 

VGS = -3.5 V 
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AlScN devices 
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Advantages: 

 High spontaneous polarization difference to GaN  

 high 2 DEG electron density 

 up to 2.4 A/mm current density 

 MOVPE growth possible 

 Lattice matched to GaN with Al0.82Sc0.18N 

combination 

 Technology still has to be developed 

S. Leone: J. Appl. Phys. 

127, 195704 (2020); doi: 

10.1063/5.0003095 

Green et al.: IEEE 

Electron Device 

Letters, Vol. 40, no. 7, 

July 2019 



-Ga2O3: Comparison to other semiconductor devices 
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  Si GaAs 4H-SiC GaN β-Ga2O3 

Band gap energy Eg (eV) 1.1 1.4 3.26 3.4 4.6-4.9 

Electric breakdown field Ecrit (106 V/cm) 0.3 0.4 2.2 3.3 8 (est.) 

Relative dielectric constant εr 11.9 12.9 10.1 9 10 

Thermal conductivity k (W/Kcm) 1.5 0.55 4.5 2.3 
0.23 in [010] dir. 
0.13 in [100] 

Bulk electron mobility µe (cm²/Vs) 1350 8000 900 1200 300 

Saturation velocity vsat (107 cm/s) 1.0 2.0 2.0 3 
not published in 

detail 

Baliga´s FOM related to Si (εrμeEcrit
3) 1 15 340 870 3444 

M. Higashiwaki et al: Appl. Phys. Lett., 100, 013504, (2012) 



Ga2O3 device development chain. Wafering and epitaxy 

Ga2O3 growth 

Czochralski method 
Semi-insulating Mg-doped  

Ga2O3 crystal (2”)  

Ga2O3 slab, 1 cm thick 

cut out from boule 
Ga2O3 wafer cut out 

from slab (1x1 cm²) 

M. Baldini et al., J. Mat Sci in Semicond. Processing 2018 

Lattice 

orientation 

l 

(W/(cmK)) 

(100) 10.9 

(001) 21 

(010) 29 

Leibniz-Institut für Kristallzüchtung (IKZ) (1
0

0
) 

c
le

a
v
a

g
e

 p
la

n
e

s
 (010) 

(100) 

(010) (100) 

Device 

process 
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Process and epi optimization 
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Critical technological steps 

 Epitaxy:  Properties strongly depend on device orientation (anisotropy of electron mobility and thermal conductivity 

 Processing 

 Lithography on small wafers (1x1cm²) 

 Gate oxide technology in conjunction with gate recess (ALD Al2O3) 

 Ohmic contacts (n+ - doping using Ge+ -Implantation) 

 Device isolation (N+ -Implantation) 

 

Si- Mg- doped Ga2O3 substrate (100) 

(semi-insulating) 

Ga2O3 channel (n-doped) 

Source Drain 
Gate 

Gate recess, 
Gateoxide 
(option) 

Implanted 
n+-region 
(option) 

Isolation mesa  
(or implantion) 

SiNx-passiv. 

epi structure 
optimization 

Optimum 
substrate 

orientation 

Optimum 
passivation 



Example of lateral device technology (1): Substrate, epi and processing 
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Substrates 

 1x1 cm² Ga2O3 Mg compensated substrate 

 Special technological approach for wafer stepper lithography 

Processing sequence: 

 Gate recess etching 

 AlD Al2O3 gate insulator deposition 

 SiNx deposition (1st passivation) 

 Isolation implantation 

 Gate trench etching (gate length 0.7 µm) 

 Gate metal deposition (TiAu) 

 SiNx deposition (2nd passivation) 

 Opening of contact windows 

 Interconnect metal deposition 

 

S DG
SiNx 1
SiNx 2

Mg-doped Ga2O3 substrate (100)

(semi-insulating)

Si-doped Ga2O3 channel (200 nm)

Al2O3 (25 nm)

Implantation 

Isolation

S DG
SiNx 1
SiNx 2

Mg-doped semi-insulating
β-Ga2O3 substrate (100)

Si-doped Ga2O3 channel (200 nm)

Al2O3 (25 nm)

Implantation 

Isolation

(a)

(b)



Example of lateral device technology (2):  DC device results 
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 Extremely low leakage 

 Gate leakage < = 10-11 A/mm 

 Drain leakage < 10-10 A/mm 

 On-off ratio > 108 

 Negligible hysteresis of MIS gate  

 Drain current > 120 mA/mm 

 On-state resistance 70 Ωmm  185 Ωmm  

as LGD increases from 2 to 10 µm 
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Example of lateral device technology (3):  Device breakdown 
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 Breakdown linearly scales with gate 

/ drain distance 

 Breakdown field around 200 MV/cm 

IEEE Electron Device Letters, 

Vol. 40, No. 9, September 

2019 
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State-of-the-art and comparison to other device families 
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Vertical devices 
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Depletion or accumulation type device 

 Significant advantages: 

 Voltage drop over epitaxial layer if device is turned 

off – ideal separation of high potentials 

 Requires lower chip area at high voltage levels 

 Disadvantages 

 Controlled n--doping for drift zone 

less than 1x1016 / cm³ depending on targeted 

voltage level 

 Requires new concepts for edge termination and 

control of high-field region at trench bottom 

sidewall 
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Example of vertical device technology (2): processed FinFET 
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High voltage engineering 

 Field plates tom suppress critical field regions 

(backed with FE simulations) 

 Optimized layout for high voltage 

 Rounded structures to avoid E-field crowding 

Taken from: Proceedings of the 31st 

International Symposium on Power 

Semiconductor Devices & ICs 

May 19-23, 2019, Shanghai, China 



GaN verticval trench MISFETs for direct laser driving 

 Idea: Reduce parasitic inductances by developing an ultrafast “electronic valve“ 

 Chip-on-chip hetero integration 

 Requires “true vertical” GaN devices 
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Test of mounting schemes for heterointegration 

 Laser – GaN switch heterointegration 

 High-speed core with integrated capacitors 
 Mounted on AlN interposer 

 

Heterointegration of laser, 

GaN transistor and capacitors 

on AlN submount 

(~ 7x7 mm²) 
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Impressive results obtained 
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 Scaling concept works 
 Current density of up to 4000 A/cm² obtained with 
moderate scaling concepts 
 

 Nearly hysteresis free devices  
 gate technology development made good progress 

Vgs 0…10 V, V= 1 V  

2.4 mWcm2  

Vds =10V 

PW = 300 µs 

1 A compliance 



Cip-on-chip mouinting vertical GaN – diode laser 
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GaAs based DBR-BA laser 903 nm 

 

3.6 ns pulses, about 5 W optical power 

 



Conclusions 

GaN power switching devices reached high maturity – world wide 

 Optimum device switching at high voltage is still an quality characteristics 

 it is very different for different device vendors 

 New material schemes are coming up: AlN, AlScN…. 

High switching speed of GaN power devices has been demonstrated 

 Monolithic and hybrid integration techniques necessary to further increase speed 

 However: Monolithic integration of half bridges still a problem especially for high voltage applications 

Future developments 

 Hybride and monolithic integration schemes  think in terms of high frequency 

 High voltage vertical GaN devices 

 Gallium oxide lateral and vertical devices 


